# L1正则 import numpy as np from sklearn.linear_model import Lasso from sklearn.linear_model import SGDRegressor X = 2 * np.random.rand(100, 1) y = 4 + 3 * X + np.random.randn(100, 1) lasso_reg = Lasso(alpha=0.15) lasso_reg.fit(X, y) print(lasso_reg.predict(1.5)) sgd_reg = SGDRegressor(penalty='
L1,L2正则化代码
最新推荐文章于 2024-09-30 21:23:55 发布
本文详细介绍了L1和L2正则化的概念,并提供了相关的Python代码实现,帮助读者理解这两种正则化在人工智能模型中的应用。
摘要由CSDN通过智能技术生成