caffe学习笔记5-classification_demo.m学习

function [scores, maxlabel] = classification_demo(im, use_gpu)
% [scores, maxlabel] = classification_demo(im, use_gpu)
%
% 使用BVLC CaffeNet进行图像分类的示例 
% 重要:运行前,应首先从Model Zoo(http://caffe.berkeleyvision.org/model_zoo.html) 
%下载BVLC CaffeNet训练好的权值
%
% ****************************************************************************
% For detailed documentation and usage on Caffe's Matlab interface, please
% refer to Caffe Interface Tutorial at
% http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab
% ****************************************************************************
%
% input
%   im       color image as uint8 HxWx3
%   use_gpu  1 to use the GPU, 0 to use the CPU
%
% output
%   scores   1000-dimensional ILSVRC score vector 1000维的特征向量
%   maxlabel the label of the highest score  对应分类匹配最大score的标签
%
% You may need to do the following before you start matlab:
%  $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64
%  $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6
% Or the equivalent based on where things are installed on your system
%
% Usage:
%  im = imread('../../examples/images/cat.jpg');
%  scores = classification_demo(im, 1);
%  [score, class] = max(scores);
% Five things to be aware of: //五点需要注意
%   caffe uses row-major order //caffe使用行主序
%   matlab uses column-major order //matlab使用列主序
%   caffe uses BGR color channel order //caffe使用BGR顺序
%   matlab uses RGB color channel order //matlab使用RGB顺序
%   images
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值