yolov5创建数据集并训练目标检测模型

数据集收集

使用labelimg进行数据标注

下面展示一些 内联代码片

pip install labelimg
labelimg

在这里插入图片描述
第一步点击 点击打开文件,选择要标注的图像目录,之后点击改变保存目录,选择标注的标签保存位置
在这里插入图片描述
之后选择标签的格式,取决于训练时模型读取数据的方式
建议在 View 里 打开自动保存

快捷键
A上一张图片
D下一张图片
W快速框选

数据集格式

以yolov5为例

datasets
train
images
labels
test
images
labels
valid
images
labels

建议数据集划分为 train: test: valid = 7: 2: 1

训练模型

下载并配置yolov5环境

需要在pytorch gpu版本下进行

git clone https://github.com/ultralytics/yolov5 
cd yolov5
pip install -r requirements.txt  # 下载所需包

放置数据集

将数据集放在 yolo5 目录下即可,之后配饰 .yaml 文件

train: ../train/images
val: ../valid/images
test: ../test/images

nc: 你的数据种类数
names: ['类别1的名称', '类别2的名称', '类别3的名称']

命名为 data.yaml, 放在 yolo5\数据集目录

训练模型

打开train.py, 设置以下四个参数

def parse_opt(known=False):
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
    parser.add_argument('--data', type=str, default=ROOT / 'datasets/data.yaml', help='dataset.yaml path')
    parser.add_argument('--batch-size', type=int, default=32, help='total batch size for all GPUs, -1 for autobatch')
    parser.add_argument('--epochs', type=int, default=20, help='total training epochs')

–data 为数据集路径, 使用data.yaml 文件
–batch-size 为每个训练批次的图片数, 提高该数值会增加训练速度,同时也会带来更高的内存占用
–epochs 训练次数

模型默认使用yolov5s.pt, 各个预训练模型参数如下

Modelsize
(pixels)
mAPval
0.5:0.95
mAPval
0.5
Speed
CPU b1
(ms)
Speed
V100 b1
(ms)
Speed
V100 b32
(ms)
params
(M)
FLOPs
@640 (B)
YOLOv5n64028.045.7456.30.61.94.5
YOLOv5s64037.456.8986.40.97.216.5
YOLOv5m64045.464.12248.21.721.249.0
YOLOv5l64049.067.343010.12.746.5109.1
YOLOv5x64050.768.976612.14.886.7205.7
YOLOv5n6128036.054.41538.12.13.24.6
YOLOv5s6128044.863.73858.23.612.616.8
YOLOv5m6128051.369.388711.16.835.750.0
YOLOv5l6128053.771.3178415.810.576.8111.4
YOLOv5x6
+ [TTA][TTA]
1280
1536
55.0
55.8
72.7
72.7
3136
-
26.2
-
19.4
-
140.7
-
209.8
-

之后运行 train.py 训练模型

使用模型

pytorch.hub

import torch

# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')

# Images
img = 'https://ultralytics.com/images/zidane.jpg'numpy, list

# Inference
results = model(img)

# Results
results.print()

非hub模型的使用, 单张图片检测

from models.common import DetectMultiBackend
from utils.dataloaders import LoadImages
from utils.general import Profile, check_img_size, non_max_suppression, scale_boxes
from utils.torch_utils import select_device
from utils.plots import Annotator, colors
import cv2

import torch


def dtect_img(model, img_path, save_path, size=640):

    imgsz = (640, 640)
    bs = 1  # batch_size
    conf_thres = 0.25
    iou_thres = 0.45
    max_det = 1000
    classes = None
    agnostic_nms = True

    stride, names, pt = model.stride, model.names, model.pt
    imgsz = check_img_size(imgsz, s=stride)  # check image size


    dataset = LoadImages(img_path, img_size=imgsz, stride=stride, auto=pt)

    model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz))  # warmup
    seen, windows, dt = 0, [], (Profile(), Profile(), Profile())

    # 数据读取
    for path, im, im0s, vid_cap, s in dataset:
        with dt[0]:
            im = torch.from_numpy(im).to(model.device)
            im = im.half() if model.fp16 else im.float()  # uint8 to fp16/32
            im /= 255  # 0 - 255 to 0.0 - 1.0
            if len(im.shape) == 3:
                im = im[None]  # expand for batch dim

        # Inference
        with dt[1]:
            pred = model(im)
        # NMS
        with dt[2]:
            pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)

        det = pred[0]
        annotator = Annotator(im0s, line_width=3, example=str(names))
        if len(det):
            # 图像标注区域等比缩放
            det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0s.shape).round()

            for c in det[:, 5].unique():
                n = (det[:, 5] == c).sum()  # detections per class
                s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

            # 打印检测结果
            *xyxy, conf, cls = det.tolist()[0]
            name = names[int(c)]
            conf = f'{float(conf):.2f}'
            print(xyxy, "可信度:", conf, name)

            # 图像标注
            label = name + " " + conf
            annotator.box_label(xyxy, label, color=colors(c, True))

            # 保存图片
            img = annotator.result()

    return img

if __name__ == '__main__':
     model_path = '' # 模型路径
     img_path = '' # 检测图片路径
     save_path = '' # 保存路径
     
     device = ''
     device = select_device(device)

     model_detect = DetectMultiBackend(model_path, device=device)
     img = dtect_img(model_detect, model_path, save_path=)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值