【数学建模】评价模型——主成分分析 PCA SPSS实现、Python实现

关键词:【主成分分析】【SPSS】【Python】
在这里插入图片描述

PCA介绍

主成分分析(Principal Component Analysis,PCA):利用降维的方法,把多指标转化为几个综合指标的多元统计方法;

实际问题中,为了全面分析问题,往往提出很多与此有关的变量(因素),每个变量在不同程度上包含了结果的部分信息;

主成分:由原始指标进行线性组合形成的几个新指标,用这几个新指标尽可能地去解释原来指标包含的大部分信息;

比如:一个对国民经济的研究,经过主成分分析后,用三个新变量能够代替原来的17个变量,并且保持97.4%的精度;

主成分与原始变量的关系:

  • 主成分保留了原始变量绝大多数信息;
  • 主成分的个数大大少于原始变量的数目;
  • 各个主成分之间互不相关;
  • 每个主成分都是原始变量的线性组合;

  一般来说,代表原来m个变量的主成分不止一个,但不同主成分的信息不能相互包含,统计上的描述就是:两个主成分的协方差为0,几何上就是两个主成分正交;

SPSS实现

步骤:
SPSS导入数据 -> 分析 -> 降维 -> 因子分析;
描述 -> 系数;
抽取 -> 碎石图;
得分 -> 显示因子得分系数矩阵;

  1. 量纲

  主成分分析的结果受量纲的影响,由于各变量的单位可能不同,结果也不同;这是最大的问题,所以主成分分析之前都需要对个变量进行无量纲化处理,然后用协方差 or 相关系数矩阵进行分析;SPSS在分析之前自带无量纲化处理了

无量纲化处理一般分两种:
(1) 归一化
其一:min-max归一化 => x ′ = x − m i n ( x ) m a x ( x ) − m i n ( x ) x'=\frac{x-min(x)}{max(x)-min(x)} x=max(x)min(x)xmin(x)
其二:平均归一化 => x ′ = x − m e a n ( x ) m a x ( x ) − m i n ( x ) x'=\frac{x-mean(x)}{max(x)-min(x)} x=max(x)min(x)xmean(x)
(2) 标准化
x ′ = x − m e a n ( x ) σ ( σ 为 标 准 差 ) x'=\frac{x-mean(x)}{\sigma}(\sigma为标准差) x=σxmean(x)(σ)


SPSS手动无量纲化(标准化):分析 -> 描述统计 -> 描述 -> 勾选"将标准化得分另存为变量"
在这里插入图片描述

  1. 相关性矩阵
    在这里插入图片描述

  2. 总方差解释
    在这里插入图片描述

  3. 碎石图
    在这里插入图片描述

  4. 求指标对应系数

方法一:利用成分矩阵+解释总方差求得
在这里插入图片描述
Fn前面的系数 就是拿 Fn的贡献率/(F1和F2的累计贡献率);比如F1前面的系数:(72.2/84.5)

方法二:利用成分得分系数矩阵(简单但不建议)
在这里插入图片描述
计算综合评价值 F=W1F1+W2F2; Wi 为第 i 主成分的贡献率;

比如方法一代入后最终结果如下:
在这里插入图片描述
比如方法二代入后最终结果如下:
在这里插入图片描述

python实现

简单的主成分分析

sklearn.decomposition模块的PCA函数sklearn.decomposition.PCA(n_components=None,copy=True)

  • n_components:缺省默认为None,所有成分被保留;若设为2,则提取2个主成分,若为0.85,则自动选择主成分,使满足累计贡献率85%;
  • copy:缺省默认为True,表示运行算法时,将原始数据复制一份进行分析;若为false,则在原始数据上进行降维计算;

步骤

  • 对数据矩阵A进行标准化得到B;
  • 计算相关系数矩阵np.corrcoef(B.T)
  • 计算相关系数矩阵R的特征值 λ1>λ2>…>λm ,以及对于的标准正交化特征向量 u1,u2…um,向量是按列的;利用特征变量得到主成分变量表达式 F1 = u11x1’+u21x2’…+um1ym,F2=…;
  • 计算主成分贡献率和累计贡献率,一般取累计贡献率达到85%以上的主成分就行
  • 利用得到的主成分F1,F2,…Fk分析问题,进行评价;

案例:
在这里插入图片描述

import numpy as np
from sklearn.decomposition import PCA

a = np.loadtxt("Pdata11_7.txt")
b = np.r_[a[:, 1:4], a[:, -3:]]  # 构造数据矩阵
print("相关系数矩阵:", np.around(np.corrcoef(b.T), decimals=3))  # 数据标准化并计算相关系数矩阵,并保留三位小数

md = PCA(n_components=0.85).fit(b)  # 构造并训练模型(累计贡献率>85%即可)

print("特征值为:", md.explained_variance_)
print("各主成分的贡献率:", md.explained_variance_ratio_)
print("奇异值为:", md.singular_values_)
print("各主成分的系数:\n", md.components_)  # 每行是一个主成分
"""下面直接计算特征值和特征向量,和库函数进行对比"""
cf = np.cov(b.T)  # 计算协方差阵
c, d = np.linalg.eig(cf)  # 求特征值和特征向量
print("特征值为:", c)
print("特征向量为:\n", d)
print("各主成分的贡献率为:", c / np.sum(c))

在这里插入图片描述
分析评价:
在这里插入图片描述

主成分分析用于综合评价

  主成分分析可应用于诸多评价领域,诸如投资组合风险管理、企业效益的综合分析、图像特征识别等;将主成分分析于聚类分析、判别分析以及回归分析方法相结合;
一般步骤

  • 若各指标的属性不同(成本型、利润型等),将原矩阵A标准化为B;
  • 计算B的相关系数矩阵R;
  • 计算 R 的特征值 λ 以及相应的特征向量 u;
  • 根据特征值计算累计贡献率,确定主成分的个数,而特征向量 ui 就是第 i 主成分的系数向量
  • 计算主成分的得分矩阵,若选定 K 个主成分,则主成分得分矩阵为 F = B ·[u1,u2,···,uk]
  • 计算综合评价值 Z=FW,其中 W 是第 i 主成分的贡献率(占总主成分贡献率的多少);根据综合评价值进行排序,若为效益型指标,则评价值越大排名越靠前;若为成本型指标值,则评价越小排名越靠前;

对于下列案例:
在这里插入图片描述

import numpy as np
from scipy.stats import zscore

a = np.loadtxt("Pdata11_8.txt")
print("相关系数阵为:\n", np.corrcoef(a.T))
b = np.delete(a, 0, axis=1)  # 删除第1列数据
c = zscore(b)
r = np.corrcoef(c.T)  # 数据标准化并计算相关系数阵
d, e = np.linalg.eig(r)  # 求特征值和特征向量
rate = d / d.sum()  # 计算各主成分的贡献率
print("特征值为:", d)
print("特征向量为:\n", e)
print("各主成分的贡献率为:", rate)
k = 1  # 提出主成分的个数
F = e[:, :k]
score_mat = c.dot(F)  # 计算主成分得分矩阵
score1 = score_mat.dot(rate[0:k])  # 计算各评价对象的得分
score2 = -score1  # 通过表中数据以及score1观测,需要调整得分的正负号
print("各评价对象的得分为:", score2)
index = score1.argsort() + 1  # 排序后的每个元素在原数组中的位置
print("从高到低各个城市的编号排序为:", index)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Notice

  • 主成分分析时,主成分的系数的正负号是不可控的,因为特征向量乘以 -1 仍然是特征向量,所以一定要根据实际问题判断系数要不要取相反数!
  • 主成分分析之前,一定要进行数据的标准化 or 归一化,一般是标准化;
  • 19
    点赞
  • 137
    收藏
    觉得还不错? 一键收藏
  • 7
    评论
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值