BZOJ1004【HNOI2008】Cards

1 篇文章 0 订阅
1 篇文章 0 订阅

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1004


【分析】

    首先这是个置换群。由于之前没学过置换群于是去补了一下。主要是Burnside引理与Polya定理,由于太弱看了很久。

    然后就可以开始应用了,但是由于有颜色数量限制不能直接使用Polya定理,需要用Burnside引理并且有比较深刻的理解。大概就是如果一个方案在置换p下不变,那么这个置换的同一个循环节上的颜色是一样的。由此计算不变的方案数。


【代码】

#include <cstdio>
#include <cstring>
using namespace std;
const int maxs=22,maxn=65;

int D[maxn][maxn];
int f[maxs][maxs][maxs];
int t[maxn],vis[maxn],cnt;
int sr,sb,sg,n,m,p,ans;

void Circle(int o)
{
	memset(vis,0,sizeof(vis));
	memset(t,0,sizeof(t));
	cnt=0;
	for (int i=1;i<=n;i++) if (!vis[i])
	{
		t[++cnt]=1;
		vis[i]=1;
		int x=D[o][i];
		while (x!=i) vis[x]=1,t[cnt]++,x=D[o][x];
	}
}

int DP()
{
	memset(f,0,sizeof(f));
	f[0][0][0]=1;
	for (int o=1;o<=cnt;o++)
	for (int i=sr;i>=0;i--)
	for (int j=sb;j>=0;j--)
	for (int k=sg;k>=0;k--)
	{
		if (i>=t[o]) f[i][j][k]+=f[i-t[o]][j][k];
		if (j>=t[o]) f[i][j][k]+=f[i][j-t[o]][k];
		if (k>=t[o]) f[i][j][k]+=f[i][j][k-t[o]];
		f[i][j][k]%=p;
	}
	return f[sr][sb][sg];
}

void Extended_GCD(int a,int b,int &x,int &y)
{
	if (b==0) {x=1;y=0;return;}
	Extended_GCD(b,a%b,x,y);
	int temp=y;y=x-(a/b)*y;x=temp;
}

void Ans_Dividem()
{
	int x,y;
	Extended_GCD(m,p,x,y);
	x=(x%p+p)%p;
	ans=(ans*x)%p;
}

int main()
{
	scanf("%d%d%d%d%d",&sr,&sb,&sg,&m,&p);
	n=sr+sb+sg;
	for (int i=1;i<=m;i++) for (int j=1;j<=n;j++) scanf("%d",&D[i][j]);
	m++;
	for (int i=1;i<=n;i++) D[m][i]=i;
	for (int i=1;i<=m;i++) Circle(i),ans=(ans+DP())%p;
	Ans_Dividem();
	printf("%d\n",ans);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值