(最新更新!)2024全国大学生数学建模竞赛(国赛)E题 强化学习+KMeans+交通流机理建模

(文中前面的几张图片是我往期作品中的部分内容和可视化图片哦,可视化内容非常精美!)

以下是开赛后我们的正式更新内容

2024全国大学生数学建模竞赛(国赛)E题 强化学习+KMeans+交通流机理建模

赛题重述

本题目需要针对一个拥有知名景区的小镇的交通流量管控问题进行了研究和分析。随着城市化进程的加快以及车辆数量的快速增长,即使在一些非中心城市,交通拥堵问题也日益成为影响地方经济发展和居民生活质量的重要因素。尤其是在假期期间,景区周边道路的车流量显著增加,常常因游客车辆寻找停车位而导致的低速巡游现象,加剧了交通的拥堵和通行效率的下降。为了解决这些问题并提高交通管理的科学性和有效性,本文提出了以下四个具体问题,并针对每个问题进行了详细的建模和分析:

1. 时段划分与车流量估计 对小镇主要道路交叉口的车流量数据进行分析,根据一天中的车流量差异,将一天划分为若干个时间段,并估计每个时段内各个方向(包括直行和转弯)的车流量。这一问题的目的是识别车流量的高峰期和低谷期,为后续的信号灯优化配置提供数据基础。

2. 信号灯优化配置: 基于车流量数据和第一问的时段划分结果,对主要道路上的所有交叉口的交通信号灯进行优化配置,以在保证车辆正常通行的前提下,使车流的平均速度最大化。这一问题涉及到如何合理分配绿灯、黄灯和红灯时间,以提高整体通行效率。

3. 巡游车辆识别与停车位需求估算: 针对五一黄金周期间的数据,分析车辆在景区周边的巡游行为,识别那些正在寻找停车位的车辆,并估算假期期间景区需要临时征用多少停车位才能满足需求。该问题的解决有助于缓解景区周边的交通压力,并为相关管理部门提供科学的决策支持。

4. 临时交通管控措施效果评价: 在五一黄金周期间,小镇对景区周边道路实施了临时性交通管理措施(如道路封闭、单行线、限制通行等)。本文结合实际车流量数据,评价这些临时管控措施在主要道路上的效果,包括对车流量、平均车速和延误时间等关键交通指标的影响。通过这一问题的分析,可以为进一步优化临时交通管控措施提供依据。

重难点分析

1. 交通流量分析:

  • 需要分析各个交叉口的车流量数据,了解不同时间段和方向的交通流量变化。
  • 通过数据分析找出交通拥堵的高峰时段和高峰路段。

2. 车辆轨迹和行驶路径推测:

  • 由于监控设备只能记录车辆在特定位置的出现和方向,但无法直接判断车辆的具体行驶路径(左转、直行、右转),需要根据时间和车辆出现的规律来推测车辆的行驶路径。
  • 可能需要使用一些轨迹推断算法,例如马尔可夫模型或基于历史数据的路径预测模型。

3. 拥堵原因分析:

  • 分析车辆的突然出现和消失,推测可能的停车场入口和出口位置,理解这些停车行为对整体交通流量的影响。
  • 需要考虑游客车辆的特殊性,如寻找停车位的行为对交通流量的影响。

4. 数据清洗和处理:

  • 数据可能存在噪音和不完整的情况,需要进行数据清洗和预处理。
  • 例如,处理由于监控设备失灵或误操作导致的数据缺失或错误记录。

5. 交通优化策略:

  • 基于数据分析的结果,可以制定交通优化策略,例如调整信号灯周期,设置停车引导系统,或者优化道路规划以减少拥堵。
  • 可能需要使用优化算法如线性规划、整数规划或者遗传算法来实现最优的交通控制策略。

6. 模拟和预测:

  • 使用仿真工具或交通模拟软件(如SUMO、VISSIM)来模拟不同策略下的交通情况,验证优化方案的效果。
  • 使用预测模型(如时间序列分析、LSTM等)来预测未来的交通流量情况,以便提前采取应对措施。

整体求解思路

问题 1: 分时段估计车流量

分析: 这个问题要求对交叉口的车流量进行时段划分和估计。我们需要利用监控设备提供的数据,根据一天中不同时间段的车流量差异,将一天分为若干时段,并估计每个时段各个相位的车流量。

解决方法:

  1. 1. 时间序列聚类: 使用时间序列聚类算法(如K-means、DBSCAN)对一天中的车流量数据进行聚类,将一天划分为若干个时段。每个聚类代表一个相对稳定的车流量时段。
  2. 小波分析: 使用小波变换分析车流量数据的局部变化特征,确定不同时段的车流量模式。
  3. 多元回归分析: 对各个时段的车流量数据进行多元回归分析,考虑不同的影响因素(如工作日/周末、节假日、天气等),构建预测模型来估计不同时段的车流量。

问题 2: 信号灯优化配置

分析: 这个问题要求在保证车辆通行的前提下,对信号灯进行优化配置,以使车流平均速度最大化。需要考虑多个交叉口的协调控制。

解决方法:

  1. 强化学习(Reinforcement Learning): 使用深度强化学习(如DQN、DDPG)模型对交通信号灯进行优化。利用仿真环境,模型通过不断学习调整信号灯时间分配,以最大化车流的平均速度。
  2. 非线性优化模型: 构建一个非线性优化模型,将车流量、等待时间、通行时间等作为约束条件,目标是最大化平均速度。使用遗传算法或粒子群算法来求解优化问题。
  3. 图论模型: 使用图论中的最小费用最大流模型,将整个交通系统建模为一个网络,优化各个节点(交叉口)之间的流量分布,以达到整体的通行效率最大化。

问题 3: 识别巡游车辆和停车位需求估算

分析: 这个问题要求识别在寻找停车位的巡游车辆,并估算假期景区需要临时征用的停车位数量。

解决方法:

  1. 轨迹分析与聚类: 使用DBSCAN或OPTICS等轨迹聚类算法,分析车辆在景区周边的行驶轨迹,识别出在特定区域内来回移动且没有离开区域的巡游车辆。
  2. 泊松过程与排队论模型: 使用泊松过程对巡游车辆的到达率进行建模,并使用M/M/c排队模型估算在高峰期所需的停车位数量。
  3. 蒙特卡罗模拟: 构建停车位需求的概率模型,通过蒙特卡罗模拟进行多次仿真,估算出在不同情景下的停车位需求分布。

问题 4: 评价临时管控措施效果

分析: 需要评价在五一黄金周期间实施的临时交通管理措施的效果,判断其对两条主路的通行效率和车流量的影响。

解决方法:

  1. 差分分析: 使用假期前后相同时间段的车流量数据,进行差分分析,评估管控措施的效果。可以使用配对样本T检验或卡方检验来验证效果的显著性。
  2. 因果推断模型: 使用因果推断方法(如差分中的差分(DID)模型或合成控制法)评估临时交通管理措施的因果效果,明确措施与通行效率变化之间的因果关系。
  3. 主成分分析(PCA)与聚类分析: 结合车流量、速度、延误时间等多个指标,使用主成分分析和聚类分析方法综合评价交通管理措施的效果。

建模和解题过程

变量定义和符号说明

在本文的交通流量管控问题分析中,我们使用了多个变量和符号来表示不同的交通特性和评价指标。以下是这些变量和符号的定义和说明:

Qt : 车流量(Vehicles per hour) 定义为时间 t 时段内通过某个路段或交叉口的车辆数量,单位为辆/小时。

Vt : 平均车速(Average Speed)定义为时间 t 时段内车辆在某个路段上的平均行驶速度,单位为公里/小时(km/h)。

ΔTt : 延误时间(Delay Time)定义为时间 t 时段内车辆在通过某个路段或交叉口时的平均延误时间,单位为分钟(min)。

ΔQ : 车流量变化百分比(Percentage Change in Traffic Flow)

计算公式为: 管控后管控前管控前ΔQ=Q管控后−Q管控前Q管控前×100% 表示在交通管控措施实施前后,车流量的相对变化百分比。

ΔV : 平均车速变化百分比(Percentage Change in Average Speed)

计算公式为: 管控后管控前管控前ΔV=V管控后−V管控前V管控前×100% 表示在交通管控措施实施前后,平均车速的相对变化百分比。

延误时间Δ延误时间 : 延误时间变化百分比(Percentage Change in Delay Time)

计算公式为: 延误时间管控后管控前管控前Δ延误时间=ΔT管控后−ΔT管控前ΔT管控前×100% 表示在交通管控措施实施前后,车辆延误时间的相对变化百分比。

c : 停车位数量(Number of Parking Slots) 定义为景区或路段上的可用停车位的数量,用于估算停车需求的排队论模型参数。

λ : 到达率(Arrival Rate)定义为单位时间内(通常为分钟或小时)到达景区或路段的车辆数量,单位为辆/分钟或辆/小时。

μ : 服务速率(Service Rate)定义为单位时间内(通常为分钟或小时)可以服务或停车的车辆数量,单位为辆/分钟或辆/小时。

ρ : 系统使用率(System Utilization Rate) 计算公式为: ρ=λc⋅μ 表示停车系统的使用率,即到达率与停车服务能力之比。

Pblock : 阻塞概率(Blocking Probability)表示在停车场已满时到达车辆无法找到停车位的概率,通常用于排队论模型中。。

问题 1:基于车流量的时段划分与估计

建模过程

  • 数据整理:
  • 数据包含方向、时间、车牌号和交叉口信息。
  • 根据车牌号信息可以去重,避免重复计数。
  • 对于每一个方向(north-south、south-north、east-west、west-east),记录车辆出现的时间点。

时段划分:

  • 我们需要将一天的24小时划分为若干个时间段。可以使用时间序列聚类(Time Series Clustering)的方法来对不同时间点的车流量进行聚类分析。
  • 基于K-means算法对每个方向上的车辆出现频次进行聚类,将一天划分为若干时段。

车流量估计

  • 在划分出的每个时段内,对各个方向的车辆进行计数,计算每个方向上直行和转弯车辆的比例。

数学模型:

  • 定义车流量矩阵 Vt,d 表示在时间段 t 内方向 d 的车辆数量。
  • 使用聚类算法划分时间段 T={t1,t2,…,tn} ,其中 n 是划分出的时段数。

算法步骤:

  • 数据预处理: 按时间顺序整理数据,计算每个时间点的车流量。
  • 聚类分析: 使用K-means算法对时间点进行聚类,确定时间段的数量和范围。
  • 车流量估计: 对于每个时间段和方向,统计车流量并计算转弯和直行的比例。

Python 实现与可视化

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler


	# 咕咕咕


data = {
    '方向': ['north-south', 'south-north', 'east-west', 'west-east'] * 100,
    '时间': np.random.choice(pd.date_range('2024-04-01', periods=24, freq='H'), 400),
    '车牌号': ['车牌' + str(i) for i in range(400)],
    '交叉口': ['交叉口1'] * 100 + ['交叉口2'] * 100 + ['交叉口3'] * 100 + ['交叉口4'] * 100
}

# 数据转换为DataFrame
df = pd.DataFrame(data)

# 转换时间为小时
df['小时'] = df['时间'].dt.hour

# 统计每个小时的车流量
hourly_counts = df.groupby(['小时', '方向']).size().unstack(fill_value=0)

# 数据标准化

	# 咕咕咕



# K-means 聚类分析

	# 咕咕咕



# 可视化
plt.figure(figsize=(10, 6))
for cluster in np.unique(clusters):
    plt.plot(hourly_counts[hourly_counts['Cluster'] == cluster].index,
             hourly_counts[hourly_counts['Cluster'] == cluster].mean(axis=1), label=f'Cluster {cluster}')

plt.xlabel('小时')
plt.ylabel('车流量(标准化)')
plt.title('不同时间段的车流量聚类')
plt.legend()
plt.show()

说明

  1. 数据生成: 假设生成了一些随机数据来模拟不同方向上的车辆信息。
  2. 数据预处理: 按时间顺序整理数据,将时间转换为小时,并统计每个小时的车流量。
  3. 聚类分析: 使用K-means算法对标准化后的车流量数据进行聚类,划分为4个时间段(可以根据实际情况调整)。
  4. 可视化: 绘制不同时间段内的车流量聚类结果,展示一天内车流量的变化规律。

问题 2:信号灯优化配置

建模过程

数据分析:

使用问题1中的数据:车流量的时段划分及各个相位的车流量。我们假设每个方向上的车辆遵循一定的流量分布,同时每个交叉口的信号灯都有一定的绿灯、黄灯和红灯时长。

优化目标:

最大化两条主路(经中路和纬中路)上的车流平均速度。车辆通行速度受信号灯时间分配影响,因此我们的优化目标是调整信号灯时长以提高平均速度。

数学模型:

定义变量 Gi 为交叉口 i 的绿灯时间, Yi 为黄灯时间, Ri 为红灯时间。

定义车流速度函数 vi=f(Gi,Yi,Ri) ,

目标是最大化 咕咕咕∑i...咕咕咕... ,其中 n 为交叉口数量。

约束条件:

每个信号周期 咕咕咕Ti=...咕咕咕... 。

不同相位的绿灯时间不能重叠。

车流量平衡约束:即进入交叉口的车流量等于离开交叉口的车流量。

优化算法:

使用强化学习(Reinforcement Learning)中的深度Q学习算法(DQN)或策略梯度算法(Policy Gradient)来调整信号灯配置。

每个交叉口的信号灯配置为一个动作空间,目标是最大化整个交通系统的通行效率。

算法步骤:

初始化信号灯配置和强化学习模型。

输入车流量数据,模拟交通流动。

评估当前配置下的车流平均速度。

使用强化学习算法优化信号灯配置。

重复迭代直至达到最优配置。

Python 实现与可视化

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from scipy.optimize import minimize

# 生成模拟数据:假设有3个交叉口,每个交叉口的车流量(单位:辆/分钟)在4个方向上的分布
np.random.seed(42)

	# 咕咕咕



data = {inter: {dir: np.random.poisson(5) for dir in directions} for inter in intersections}

# 定义信号灯周期
cycle_time = 60  # 60秒一个周期

# 目标函数:最大化平均速度
def objective(x):
    green_times = x[:len(directions)]
    yellow_times = x[len(directions):2*len(directions)]

    # 计算每个方向的通行时间与速度
    speeds = []
    for inter in intersections:

	# 咕咕咕


        for i, dir in enumerate(directions):
            flow = data[inter][dir]

	# 咕咕咕


        speeds.append(np.mean(inter_speeds))

    return -np.mean(speeds)  # 负值,因为minimize函数是最小化目标

# 约束条件:信号灯周期不超过60秒
constraints = [
    {'type': 'eq', 'fun': lambda x: sum(x[:len(directions)]) + sum(x[len(directions):2*len(directions)]) - cycle_time}
]

# 初始信号灯时间分配
x0 = np.array([15, 15, 15, 15, 5, 5, 5, 5])  # 每个方向的绿灯时间和黄灯时间

# 优化信号灯配置
result = minimize(objective, x0, constraints=constraints, bounds=[(5, 60)]*len(x0))

optimal_green_times = result.x[:len(directions)]
optimal_yellow_times = result.x[len(directions):2*len(directions)]

# 可视化优化结果
plt.figure(figsize=(10, 6))

	# 咕咕咕


plt.ylabel('时间 (秒)')
plt.title('优化后的信号灯配置')
plt.legend()
plt.show()

说明

  1. 数据生成: 生成了每个交叉口的模拟车流量数据。
  2. 目标函数: 定义了一个目标函数,以最大化车流的平均速度。
  3. 约束条件: ...咕咕咕...
  4. 优化算法: ...咕咕咕...
  5. 可视化: 绘制优化后的信号灯时间分配图,展示每个方向的绿灯和黄灯时间。

通过这种高级的数学建模和优化方法,我们能够在复杂的交通系统中找到最优的信号灯配置,提高整体交通效率和车流平均速度。这种方法既有理论上的创新性,也有实际应用的价值。

问题 3:识别寻找停车位的巡游车辆与停车位需求估算

建模过程

数据分析:

数据包含方向、时间、车牌号和交叉口信息。我们需要识别那些在特定区域反复巡游、寻找停车位的车辆。可以通过分析车辆的轨迹和停留时间来判断。

巡游车辆识别:

  • 咕咕咕~
  • 咕咕咕~

停车位需求估算:

  1. 泊松分布: 使用泊松分布模型对巡游车辆到达停车位的需求进行建模。
  2. 排队论模型: 使用咕咕咕~排队模型(即到达过程和服务过程均为 ...咕咕咕...),估算在高峰期所需的停车位数量。

数学模型:

定义车辆到达速率 λ 和服务速率 μ 。

设定停车位数量 c ,并计算系统的使用率

咕咕咕~

咕咕咕~

其中 E[T] 是平均等待时间, Pblock 是阻塞概率(无停车位的概率)。

算法步骤:

  1. 对数据进行预处理,提取车辆轨迹。
  2. 使用轨迹分析算法识别巡游车辆。
  3. 构建泊松分布和排队模型,估算停车位需求。

Python 实现与可视化

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import poisson
from scipy.optimize import minimize

# 生成模拟数据:假设每个车牌号表示一辆车,并生成每辆车的访问记录
np.random.seed(42)
car_ids = [f'车牌{i}' for i in range(100)]  # 100辆车
times = pd.date_range('2024-05-01', periods=1440, freq='T')  # 5月1日的分钟级时间点

data = []
for car_id in car_ids:
    visits = np.random.poisson(3, size=len(times))  # 每分钟车辆的到达率
    for time, visit in zip(times, visits):
        if visit > 0:  # 如果车辆在该时间点有出现
            for _ in range(visit):

	# 咕咕咕


df = pd.DataFrame(data)

# 轨迹分析:识别巡游车辆
def identify_cruising_vehicles(df, time_threshold=10, visit_threshold=3):
    cruising_vehicles = []
    for car_id, group in df.groupby('车牌号'):
        # 计算每辆车的访问次数和驻留时间

	# 咕咕咕


    return cruising_vehicles

cruising_vehicles = identify_cruising_vehicles(df)
print(f'识别出的巡游车辆: {cruising_vehicles}')

# 停车位需求估算:使用泊松分布和M/M/c排队模型
arrival_rate = len(cruising_vehicles) / (24 * 60)  # 每分钟的到达率
service_rate = 1 / 10  # 假设平均10分钟找到一个停车位

def parking_demand(c, arrival_rate, service_rate):

	# 咕咕咕


    return demand

# 优化停车位数量
result = minimize(lambda c: parking_demand(int(c), arrival_rate, service_rate), x0=10, bounds=[(1, 50)], method='L-BFGS-B')
optimal_parking_slots = int(result.x)

print(f'估算的最佳停车位数量: {optimal_parking_slots}')

# 可视化停车位需求估算
c_values = range(1, 51)
demand_values = [parking_demand(c, arrival_rate, service_rate) for c in c_values]

plt.figure(figsize=(10, 6))
plt.plot(c_values, demand_values, marker='o')
plt.axvline(optimal_parking_slots, color='r', linestyle='--', label=f'Optimal Slots: {optimal_parking_slots}')
plt.xlabel('停车位数量')
plt.ylabel('估算的停车位需求')
plt.title('停车位需求估算')
plt.legend()
plt.grid(True)
plt.show()

说明

  1. 数据生成: 随机生成了车辆的到达数据和轨迹信息。
  2. 巡游车辆识别: 根据车辆的轨迹数据,判断哪些车辆在景区周边巡游。
  3. 停车位需求估算: 使用泊松分布模型和M/M/c排队模型估算停车位需求,并使用优化算法确定最优停车位数量。
  4. 可视化: 绘制停车位需求的估算曲线,并标注出最佳停车位数量。

问题 4:临时交通管控措施效果评价

建模思路

数据分析:

  1. 根据附件3中提供的临时交通管控措施(红色管控路段、橙色和绿色箭头指示的车辆进入和驶出路线),结合车辆在五一黄金周期间的实际流量数据,分析管控措施的效果。
  2. 通过比较黄金周期间与正常时期的车流量、车速、延误时间等指标,评估交通管控的效果。

评价指标:

  1. 车流量变化:分析管控措施前后,车流量的变化情况(如减少或增加)。
  2. ...咕咕咕...
  3. ...咕咕咕..
  4. ...咕咕咕...

数学模型:

定义车流量 Qt 为时间 t 的车流量,

平均车速 Vt 为时间 t 的平均车速,

延误时间 ΔTt 为时间 t 的延误时间。

评价公式为:

管控后管控前管控前ΔQ=Q管控后−Q管控前Q管控前

管控后管控前管控前ΔV=V管控后−V管控前V管控前

延误时间管控后管控前管控前Δ延误时间=ΔT管控后−ΔT管控前ΔT管控前

算法步骤:

  1. 数据预处理: 整理五一黄金周期间和正常时期的车流量、车速和延误时间数据。
  2. 计算评价指标: 对每个指标进行计算并比较。
  3. 可视化分析: 使用图形化手段展示交通管控效果的变化。

Python 实现与可视化

以下是使用Python进行临时交通管控措施效果评价的代码示例:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# 生成模拟数据:假设有两个时间段的数据,分别为管控前和管控后
np.random.seed(42)

	# 咕咕咕



# 假设每小时的车流量、平均速度和延误时间数据
data_before = {
    '时间': times,
    '车流量': np.random.poisson(80, len(times)),
    '平均车速': np.random.normal(40, 5, len(times)),
    '延误时间': np.random.normal(5, 2, len(times))
}

data_after = {
    '时间': times_gw,

	# 咕咕咕


}

df_before = pd.DataFrame(data_before)
df_after = pd.DataFrame(data_after)

# 计算评价指标
delta_flow = (df_after['车流量'].mean() - df_before['车流量'].mean()) / df_before['车流量'].mean()
delta_speed = (df_after['平均车速'].mean() - df_before['平均车速'].mean()) / df_before['平均车速'].mean()
delta_delay = (df_after['延误时间'].mean() - df_before['延误时间'].mean()) / df_before['延误时间'].mean()

print(f'车流量变化百分比: {delta_flow:.2%}')
print(f'平均车速变化百分比: {delta_speed:.2%}')
print(f'延误时间变化百分比: {delta_delay:.2%}')

# 可视化分析

	# 咕咕咕



# 车流量变化图
plt.subplot(1, 3, 1)

	# 咕咕咕


plt.xlabel('时间')
plt.ylabel('车流量(辆/小时)')
plt.title('车流量变化')
plt.legend()

# 平均车速变化图
plt.subplot(1, 3, 2)
plt.plot(df_before['时间'], df_before['平均车速'], label='管控前', color='b')
plt.plot(df_after['时间'], df_after['平均车速'], label='管控后', color='r')
plt.xlabel('时间')
plt.ylabel('平均车速(km/h)')
plt.title('平均车速变化')
plt.legend()

# 延误时间变化图
plt.subplot(1, 3, 3)

	# 咕咕咕


plt.ylabel('延误时间(分钟)')
plt.title('延误时间变化')
plt.legend()

plt.tight_layout()
plt.show()

24国赛赛前准备:

论文中好的可视化内容至关重要 这里先分享一些国赛数学建模中的常用的可视化内容

数学建模中的可视化分析是一个重要的环节,它帮助研究者和观众更好地理解数据和模型的结果。以下是一些进阶的可视化分析方法和算法,以及相应的Python代码示例:

蒙特卡罗算法

算法介绍:蒙特卡罗算法是一种基于概率和随机性的方法,通过生成大量随机样本来模拟复杂系统的行为或计算数值解。它不依赖于严格的解析解,而是通过随机采样来估计问题的结果。例如,在估计圆周率π的值时,可以在一个正方形内随机生成点,然后计算落在内切圆内的点的比例,利用这个比例估计π的值。蒙特卡罗算法广泛应用于金融风险分析、物理学中的粒子行为模拟、复杂系统的概率分析等领域.

算法示例:

我们可以使用蒙特卡罗算法来估计三维图形的体积。下面是一个简单的Python程序,它使用蒙特卡罗算法来估计一个球体的体积,并使用Matplotlib库进行三维可视化。

import random
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np

def monte_carlo_volume(n):
    count = 0
    for i in range(n):
        x = random.uniform(-1, 1)
        y = random.uniform(-1, 1)
        z = random.uniform(-1, 1)
        if x**2 + y**2 + z**2 <= 1:
            count += 1
    return (count / n) * 8

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

n = 10000
volume = monte_carlo_volume(n)
print(f"Estimated volume of the sphere: {volume:.4f}")

xs = []
ys = []
zs = []
colors = []
for i in range(n):
    x = random.uniform(-1, 1)
    y = random.uniform(-1, 1)
    z = random.uniform(-1, 1)
    if x**2 + y**2 + z**2 <= 1:
        xs.append(x)
        ys.append(y)
        zs.append(z)
        colors.append(z)

ax.scatter(xs, ys, zs, c=colors, cmap='coolwarm', marker='o')
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')

plt.show()
  • 程序首先定义了一个名为monte_carlo_volume的函数,该函数使用蒙特卡罗算法来估计球体的体积。
  • 然后,程序使用monte_carlo_volume函数来估计球体的体积,并将结果打印到控制台上。
  • 接下来,程序使用Matplotlib库创建一个3D散点图,该图显示了球体的随机采样点,并根据每个点的z坐标值进行颜色渐变。

可视化效果如下:

部分依赖分析图(Partial Dependence Plot)

部分依赖分析图(Partial Dependence Plot,简称PDP)是一种用于解释复杂机器学习模型的可视化工具。PDP可以帮助我们理解一个或两个特征对模型预测结果的影响,而忽略掉其他特征的影响。这种分析对于提高模型的透明度和可解释性非常有价值。

主要特点和用途

1. 展示特征影响:PDP显示了在保持模型中所有其他特征固定的情况下,一个特征(或两个特征的交互)对预测结果的平均影响。

2. 可解释性:对于复杂的模型(如随机森林、梯度提升机等),PDP帮助解释单个特征如何影响模型的预测,提高了模型的可解释性。

3. 非线性关系和交互效应:PDP特别适合揭示特征与预测目标之间的非线性关系,以及不同特征之间的交互效应。

工作原理

PDP通过对数据集中的特定特征进行多次采样,并保持其他特征不变,然后计算模型对这些样本的预测平均值来生成。

PDP是机器学习领域中一个非常有用的工具,尤其是在需要解释复杂模型的决策过程时。通过使用PDP,数据科学家和分析师可以更好地理解和信任他们的模型预测。图像: 部分依赖分析图的生成需要一个训练好的模型和特定的数据集,这里使用一个简单的合成数据集和一个基本的分类模型来演示。

这是一个部分依赖分析图的示例,它展示了在一个简单的合成数据集上训练的梯度提升分类器中,特征0、特征1以及它们的组合(特征0和1)对模型预测的影响。这种类型的图表非常有用于解释机器学习模型的行为,特别是在识别哪些特征对模型预测最有影响时。

生成这个图表的Python代码如下:

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.inspection import plot_partial_dependence
from sklearn.datasets import make_classification

# 创建合成数据集
X, y = make_classification(n_samples=100, n_features=5, random_state=42)

# 训练梯度提升分类器
clf = GradientBoostingClassifier(n_estimators=50, random_state=42).fit(X, y)

# 绘制部分依赖图
features = [0, 1, (0, 1)]
plot_partial_dependence(clf, X, features, grid_resolution=20)

# 显示图形
plt.suptitle('Partial Dependence Plots')
plt.show()

国赛的进阶可视化图表:成对关系图

成对关系图是一种可视化技术,用于显示数据集中每个变量之间的关系。它通常用于探索数据集中的相关性和分布情况。成对关系图可以用于许多不同的应用程序,例如数据分析、生物学、金融等领域。

下面是一个简单的Python程序,它使用Seaborn库创建一个成对关系图,该图显示了Iris数据集中每个变量之间的关系: iris数据集是一个经典的机器学习数据集,用于分类和聚类等任务。它包含了150个样本,每个样本有四个特征和一个标签。特征是鸢尾花的萼片和花瓣的长度和宽度,单位是厘米。标签是鸢尾花的三个品种之一:山鸢尾、变色鸢尾和维吉尼亚鸢尾。这个数据集是由英国统计学家和生物学家Fisher在1936年发表的论文中提出的,是最早用于评估分类方法的数据集之一。iris数据集在统计学和机器学习领域都有广泛的应用和影响,被认为是一个简单而优美的数据集。

这个程序使用Seaborn库创建一个成对关系图,该图显示了Iris数据集中每个变量之间的关系。程序使用sns.load_dataset函数加载Iris数据集,并使用sns.pairplot函数创建一个成对关系图。

import seaborn as sns
import matplotlib.pyplot as plt

iris = sns.load_dataset("iris")

sns.pairplot(iris, hue="species", markers=["o", "s", "D"])

plt.show()

成对关系图的应用场景包括但不限于以下几个方面:

  1. 数据分析:成对关系图可以用于显示数据集中每个变量之间的关系,帮助数据分析人员更好地理解数据。
  2. 生物学:成对关系图可以用于显示基因表达数据的密度和分布情况,帮助生物学家更好地理解基因表达数据。
  3. 金融:成对关系图可以用于显示股票价格的密度和分布情况,帮助投资者更好地理解股票市场。

  • 16
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值