(最新更新!)2024全国大学生数学建模竞赛(国赛)D题 空间几何+多条件概率+三维优化

2024全国大学生数学建模竞赛(国赛)D题 空间几何+多条件概率+三维优化(已更新!)

题目分析

目标坐标系与潜艇位置描述:

设定潜艇中心位置的定位值在海平面上的投影为原点 O 。

坐标系定义为: X 轴为正东方向, Y 轴为正南方向, Z 轴垂直向下。

潜艇的航向由正北方向顺时针旋转到潜艇航向的方位角 β 表示。

潜艇位置的不确定性:

潜艇的三个坐标 X,Y,Z 是随机变量,且相互独立。

X,Y 均服从正态分布 N(0,σ2) 。

Z 坐标服从单边截尾正态分布 N(h0,σz2,l) ,其中 h0 是潜艇深度的定位值, l 是潜艇位置的最小深度。

深弹的引爆条件:

深弹在水中垂直下降,可以通过触发引信或定深引信引爆。

设定了三个命中潜艇的情形:

深弹落点在目标平面尺度范围内,引爆深度在潜艇上表面下方,触发引信引爆。

深弹落点在目标平面尺度范围内,引爆深度在潜艇上表面上方,且潜艇在杀伤范围内,定深引信引爆。

深弹落点在目标平面尺度范围外,但到达引爆深度时潜艇在杀伤范围内,定深引信引爆。

建模重难点分析

  • 随机变量和概率密度函数的应用:
  • 对于潜艇位置的误差处理,需要计算随机变量的概率分布及其密度函数,特别是单边截尾正态分布的应用。
  • 空间几何和目标区域的计算:
  • 需要计算深弹的落点与潜艇位置之间的几何关系,包括判断落点是否在潜艇的平面尺度范围内。
  • 多重条件概率的计算:
  • 根据深弹的引爆条件,需要计算多重条件下的命中概率,包括不同的引爆方式和潜艇在杀伤范围内的概率。
  • 优化策略:
  • 如何设定深弹的引爆深度和其他参数,以最大化命中潜艇的概率。

问题 1 分析

目标:

  • 投射一枚深弹,假设潜艇的深度定位没有误差,水平坐标定位误差服从正态分布。
  • 分析投弹最大命中概率与投弹落点平面坐标及定深引信引爆深度之间的关系。
  • 找到使投弹命中概率最大的方案,并给出最大命中概率的表达式。

思路:

1. 概率模型的建立:由于潜艇的水平位置 X,Y 均服从正态分布 N(0,σ2) ,我们可以建立一个二维的概率密度函数来描述潜艇在水平面上的位置。

命中条件:

如果深弹落点在潜艇的平面尺度范围内(长 100 m,宽 20 m),并且引爆深度位于潜艇上表面的下方,则由触发引信引爆。

如果引爆深度位于潜艇上表面的上方,同时潜艇在深弹的杀伤半径内(20 m),则由定深引信引爆。

数学表达式的推导:

计算落点在潜艇平面范围内的概率:这是一个二维正态分布在矩形区域上的积分问题。

计算在不同深度引爆的条件概率:需要对深度误差进行分析。

优化策略:

通过优化落点的坐标以及定深引信引爆深度,使得总的命中概率最大化。

可考虑用数值分析方法(如蒙特卡罗模拟)来寻找最佳投弹方案。

问题 2 分析

目标:

  • 投射一枚深弹,考虑潜艇位置的所有方向都有定位误差。
  • 给出投弹命中概率的表达式。

思路: 1. 误差建模

  • 水平坐标 X,Y 误差依然服从正态分布 N(0,σ2) 。
  • 深度 Z 误差服从单边截尾正态分布 N(h0,σz2,l) ,需要考虑潜艇实际深度的最小值 l 。
  1. 命中概率表达式的推导
  2. 需要计算在考虑所有方向定位误差情况下的三维积分概率。
  3. 结合深弹的三种引爆条件(触发引信和定深引信的两种情况),得出综合命中概率。
  4. 设计引爆深度
  5. 通过计算最佳引爆深度(即最大化命中概率的引爆深度),可使用数值优化算法(如梯度下降法或遗传算法)进行搜索。

问题 3 分析

目标:

  • 反潜飞机携带多枚深弹,投弹落点呈阵列形状。
  • 设计投弹方案(包括定深引信引爆深度及投弹落点之间的平面间隔),使得至少一枚深弹命中潜艇的概率最大。

思路: 1. 多枚深弹的布置优化

  • 假设投弹落点呈阵列分布,可以采用等间距或某种特殊形状(如圆形、网格等)的排列方式。
  • 考虑阵列中心与潜艇估计位置的相对位置,以最大化覆盖潜艇的可能性。
  1. 组合概率计算
  2. 计算每枚深弹独立命中潜艇的概率,然后利用组合概率公式计算至少一枚命中的概率。
  3. 需要结合多个深弹的杀伤范围进行空间覆盖分析,可能需要使用覆盖理论中的方法。
  4. 优化模型
  5. 优化投弹的间隔和深度设置,使得整体命中概率最高。
  6. 可以使用动态规划、蒙特卡罗模拟或遗传算法等优化方法来进行模型的数值求解和优化。

变量定义

潜艇位置坐标:

X : 潜艇在水平面上的位置坐标(东向)。

Y : 潜艇在水平面上的位置坐标(南向)。

Z : 潜艇的深度坐标(垂直方向)。

潜艇尺寸:

L : 潜艇的长度(m)。

W : 潜艇的宽度(m)。

H : 潜艇的高度(m)。

深弹相关参数:

rkill : 深弹的杀伤半径(m),深弹能够有效伤害潜艇的最大距离。

d : 深弹的引爆深度(m),深弹引爆时的深度位置。

误差参数:

σ : 潜艇水平坐标的误差标准差(m)。

σz : 潜艇深度坐标的误差标准差(m)。

l : 潜艇深度坐标的最小值(m)。

定位误差:

X∼N(0,σ2) : 潜艇在水平面上的东向坐标服从均值为0、标准差为\sigma的正态分布。

Y∼N(0,σ2) : 潜艇在水平面上的南向坐标服从均值为0、标准差为\sigma的正态分布。

Z∼N(h0,σz2,l) : 潜艇深度坐标服从均值为h_0、标准差为\sigma_z、最小值为l的单边截尾正态分布。

引爆方式:

β : 潜艇的航向方位角(°),从正北方向顺时针测量。

P1 : 深弹落点在潜艇平面范围内,且引爆深度在潜艇上表面下方的命中概率。

P2 : 深弹落点在潜艇平面范围内,引爆深度在潜艇上表面上方,且潜艇在杀伤半径内的命中概率。

P3 : 深弹落点在潜艇平面范围外,但潜艇在引爆深度和杀伤半径内的命中概率。

符号定义

O : 潜艇中心位置的定位值在海平面上的投影(原点)。

fX,Y(x,y) : 潜艇水平坐标的联合概率密度函数。

fZ(v) : 潜艇深度坐标的概率密度函数。

ϕ : 标准正态分布的概率密度函数。

Φ : 标准正态分布的累积分布函数。

问题 1:建模思路与解题过程

1. 问题描述和建模目标

我们需要分析投射一枚深弹的最大命中概率。假设潜艇的中心位置深度没有误差(深度已知为 150m),而水平坐标 X,Y 均存在定位误差,服从正态分布。我们需要找到投弹的最佳平面坐标和定深引信引爆深度,使得命中概率最大化。

2. 建立数学模型

2.1 目标函数

潜艇中心位置水平误差建模:

假设潜艇在水平面上的定位误差 X,Y 服从正态分布 N(0,σ2) ,其中 σ=120m 。

潜艇的实际位置可表示为 (X,Y) ,其概率密度函数为: fX,Y(x,y)=12πσ2exp⁡(−x2+y22σ2)

深弹的命中条件:

深弹可以通过三种方式命中潜艇:

  1. 落点在潜艇的平面范围内,且引爆深度在潜艇上表面下方(触发引信引爆)。
  2. 落点在潜艇的平面范围内,且引爆深度在潜艇上表面上方,且潜艇在杀伤半径内(定深引信引爆)。
  3. 落点在潜艇的平面范围外,但潜艇在引爆深度和杀伤半径内(定深引信引爆)。

  1. 命中概率的计算
  2. 根据上述条件,命中概率可以表示为多个条件概率的综合。

2.2 命中概率公式推导

  1. 命中概率 P_{hit} 的表达式

Phit=P1+P2+P3

P1 :深弹落点在潜艇平面范围内,且引爆深度在潜艇上表面下方的概率。

P2 :深弹落点在潜艇平面范围内,引爆深度在潜艇上表面上方,且潜艇在杀伤半径内的概率。

P3 :深弹落点在潜艇平面范围外,但潜艇在引爆深度和杀伤半径内的概率。

  • 计算 P_1 的概率

咕咕咕~

其中 ,L=100m,W=20m ,表示潜艇的长度和宽度。

计算 和P2和P3 的概率:

这两个概率需要进一步结合三维空间的几何关系和定深引信的杀伤范围来进行计算。

2.3 优化目标

找到使得 Phit 最大化的平面坐标 (x,y) 和定深引信引爆深度 d 。

3. Python代码实现与可视化

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
from scipy.integrate import dblquad

# 参数设置
L = 100  # 潜艇长度
W = 20   # 潜艇宽度
sigma = 120  # 水平定位误差标准差
h0 = 150  # 潜艇深度
r_kill = 20  # 深弹杀伤半径

# 定义目标平面内的概率密度函数
def pdf_xy(x, y, sigma):
    return (1 / (2 * np.pi * sigma ** 2)) * np.exp(-(x ** 2 + y ** 2) / (2 * sigma ** 2))

# 计算落点在潜艇平面内的概率P1
def compute_p1(L, W, sigma):
    result, _ = dblquad(pdf_xy, -W/2, W/2, lambda x: -L/2, lambda x: L/2, args=(sigma,))
    return result

# 计算潜艇在杀伤半径内的概率P2和P3
def compute_p2_p3(x, y, d, r_kill, L, W):
    # 在潜艇平面范围内且引爆深度在潜艇上方
    if -L/2 <= x <= L/2 and -W/2 <= y <= W/2:
        p2 = norm.cdf(d - h0, loc=0, scale=r_kill)
    else:
        p2 = 0

    # 在潜艇平面范围外但潜艇在杀伤半径内
    distance_to_center = np.sqrt(x ** 2 + y ** 2)
    if distance_to_center <= r_kill:
        p3 = norm.cdf(d - h0, loc=0, scale=r_kill)
    else:
        p3 = 0

    return p2, p3

# 优化函数,计算总命中概率
def optimize_hit_probability(L, W, sigma, h0, r_kill):
    best_p_hit = 0
    best_params = (0, 0, 0)
    p1 = compute_p1(L, W, sigma)

    # 遍历x, y, d的不同组合
    for x in np.linspace(-200, 200, 50):
        for y in np.linspace(-200, 200, 50):



		# 咕咕咕




    return best_params, best_p_hit

# 进行优化
best_params, best_p_hit = optimize_hit_probability(L, W, sigma, h0, r_kill)

print(f"最佳投弹方案为平面坐标(x, y) = ({best_params[0]:.2f}, {best_params[1]:.2f}),定深引爆深度d = {best_params[2]:.2f},最大命中概率为 {best_p_hit:.4f}")

# 可视化命中概率分布
x_vals = np.linspace(-200, 200, 50)

	# 咕咕咕


Z = np.zeros_like(X)

# 计算一次p1的值
p1 = compute_p1(L, W, sigma)

for i in range(len(x_vals)):
    for j in range(len(y_vals)):

	# 咕咕咕



plt.figure(figsize=(8, 6))
plt.contourf(X, Y, Z, levels=20, cmap='viridis')
plt.colorbar(label='命中概率')
plt.scatter(best_params[0], best_params[1], color='red', label='最佳投弹位置')
plt.title('投弹命中概率分布')
plt.xlabel('X 轴坐标 (m)')
plt.ylabel('Y 轴坐标 (m)')
plt.legend()
plt.show()

4. 代码解释和可视化说明

  1. 代码逻辑
  2. 定义概率密度函数 pdf_xy 表示潜艇水平定位误差的二维正态分布。
  3. 使用 dblquad 计算深弹落点在潜艇平面范围内的概率 P_1。
  4. 使用 compute_p2_p3 函数计算 P_2 和 P_3 的概率,这两个概率取决于落点位置和引爆深度。
  5. 在 optimize_hit_probability 函数中,通过遍历不同的平面坐标和引爆深度组合,寻找使命中概率 P_{hit} 最大化的投弹方案。
  6. 可视化
  7. 使用 contourf 函数绘制投弹命中概率的等高线图,以展示不同投弹位置和引爆深度对命中概率的影响。
  8. 红点标记出最佳投

弹位置。

问题 2 详细解题过程

1. 问题描述和目标

在问题 2 中,我们需要考虑潜艇中心位置在所有方向上(水平和深度)均存在定位误差。给定这些误差条件,我们要计算投射一枚深弹的命中概率表达式。并且需要设计定深引信引爆深度,使得投弹命中概率最大。

给定参数:

  • 潜艇中心位置的深度定位值 h0=150m
  • 水平定位标准差 σ=120m
  • 深度定位标准差 σz=40m
  • 潜艇中心位置实际深度的最小值 l=120m
  • 潜艇尺寸:长 L=100m ,宽 W=20m ,高 H=25m
  • 潜艇航向方位角 β=90∘
  • 深弹杀伤半径 rkill=20m

2. 数学模型和公式推导

2.1 潜艇位置误差模型

水平位置误差:

潜艇中心位置的水平坐标 X,Y 服从独立正态分布 N(0,σ2) ,

即: X∼N(0,σ2),Y∼N(0,σ2)

其联合概率密度函数为: 咕咕咕~

深度误差:

潜艇中心位置的深度 Z 服从单边截尾正态分布 N(h_0, \sigma_z^2, l),即: Z∼N(h0,σz2,l)

其密度函数为: fZ(v)=1σz⋅ϕ(v−h0σz)1−Φ(l−h0σz),(l<v<+∞)

其中 和ϕ(⋅)和Φ(⋅) 分别是标准正态分布的密度函数和分布函数。

2.2 深弹的命中条件和概率计算

命中条件如下:

条件 1:落点在潜艇平面范围内,引爆深度在潜艇上表面下方,触发引信引爆: P1=∫−L2L2∫−W2W2fX,Y(x,y)dxdy⋅P(Z≤d) 其中 P(Z≤d) 是深度 Z 小于或等于定深引信引爆深度 d 的概率,可以通过截尾正态分布的累积分布函数计算。

条件 2:落点在潜艇平面范围内,引爆深度在潜艇上表面上方,潜艇在深弹的杀伤范围内,定深引信引爆: P2=∫−L2L2∫−W2W2fX,Y(x,y)dxdy⋅P(Z>d)⋅Pkill(d,Z)

其中 Pkill(d,Z) 是潜艇在深弹杀伤范围内的概率。

条件 3:落点在潜艇平面范围外,但引爆深度时潜艇在杀伤范围内,定深引信引爆: 区域外P3=∫区域外fX,Y(x,y)dxdy⋅Pkill(d,Z)

2.3 综合命中概率

咕咕咕~

我们的目标是找到定深引信引爆深度 d 使得咕咕咕~。

3. Python 代码实现

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm, truncnorm
from scipy.integrate import dblquad

# 定义参数
L, W, H = 100, 20, 25  # 潜艇尺寸 (m)
sigma = 120  # 水平定位误差标准差 (m)
h0, sigma_z, l = 150, 40, 120  # 深度定位参数 (m)
r_kill = 20  # 深弹杀伤半径 (m)

# 定义潜艇位置误差的概率密度函数
def pdf_xy(x, y, sigma):

	# 咕咕咕



def pdf_z(v, h0, sigma_z, l):

	# 咕咕咕



# 计算命中概率 P1
def compute_p1(sigma, d, h0, sigma_z, l):
    p1_xy, _ = dblquad(pdf_xy, -W/2, W/2, lambda x: -L/2, lambda x: L/2, args=(sigma,))
    a, b = (l - h0) / sigma_z, (d - h0) / sigma_z  # 截尾区间

	# 咕咕咕


    return p1_xy * p1_z

# 计算命中概率 P2 和 P3
def compute_p2_p3(sigma, d, h0, sigma_z, l, r_kill):
    p2_xy, _ = dblquad(pdf_xy, -W/2, W/2, lambda x: -L/2, lambda x: L/2, args=(sigma,))

	# 咕咕咕


    return p2_xy * p2_z * p2_kill, p3_xy * p3_z

# 优化命中概率
def optimize_hit_probability(sigma, h0, sigma_z, l, r_kill):
    best_p_hit = 0
    best_depth = h0
    d_values = np.linspace(h0 - 50, h0 + 50, 100)

    for d in d_values:

	# 咕咕咕



        if p_hit > best_p_hit:
            best_p_hit = p_hit
            best_depth = d

    return best_depth, best_p_hit

# 进行优化计算
best_depth, best_p_hit = optimize_hit_probability(sigma, h0, sigma_z, l, r_kill)
print(f"最佳定深引信引爆深度 d = {best_depth:.2f} m,最大命中概率为 {best_p_hit:.4f}")

# 高级可视化
plt.figure(figsize=(10, 6))
depths = np.linspace(h0 - 50, h0 + 50, 100)
probabilities = [compute_p1(sigma, d, h0, sigma_z, l) + sum(compute_p2_p3(sigma, d, h0, sigma_z, l, r_kill)) for d in depths]

plt.plot(depths, probabilities, label='命中概率', color='b')
plt.axvline(x=best_depth, color='r', linestyle='--', label='最佳引爆深度')

	# 咕咕咕


plt.grid(True)

# 显示三维概率分布图
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')
x_vals = np.linspace(-300, 300, 100)
y_vals = np.linspace(-300, 300, 100)
X, Y = np.meshgrid(x_vals, y_vals)
Z = np.zeros_like(X)

for i in range(len(x_vals)):
    for j in range(len(y_vals)):
        Z[i, j] = pdf_xy(X[i, j], Y[i, j], sigma)

ax.plot_surface(X, Y, Z, cmap='viridis', edgecolor='none')
ax.set_title('潜艇水平位置的误差概率密度分布')
ax.set_xlabel('X 轴坐标 (m)')
ax.set_ylabel('Y 轴坐标 (m)')
ax.set_zlabel('概率密度')

plt.show()

4. 代码解释和高级可视化说明

  1. 代码逻辑
  2. 潜艇位置误差建模:利用正态分布和截尾正态分布描述潜艇位置误差。
  3. 命中概率计算:根据三种不同的命中条件计算每种情况下的命中概率。
  4. 优化目标:通过遍历不同的定深引信引爆深度,寻找最大化综合命中概率的最优引爆深度。
  5. 可视化
  6. 命中概率与引爆深度的关系图:使用 Matplotlib 绘制命中概率随引爆深度变化的曲线,并用红色虚线标记出最佳引爆深度。
  7. 三维概率分布图:绘制潜艇水平位置误差的三维概率密度分布图,以直观展示潜艇在水平面上的位置不确定性。

问题 3 详细解题过程

1. 问题描述和目标

在问题 3 中,我们考虑投掷多枚深弹的情况。假设反潜飞机可以携带 9 枚航空深弹,并且所有深弹的定深引信引爆深度相同,投弹落点在平面上呈阵列形状。我们的目标是设计投弹方案(包括定深引信引爆深度和投弹落点之间的平面间隔),使得至少一枚深弹命中潜艇的概率最大化。

给定参数:

  • 潜艇中心位置的深度定位值 h0=150m
  • 水平定位标准差 σ=120m
  • 深度定位标准差 σz=40m
  • 潜艇中心位置实际深度的最小值 l=120m
  • 潜艇尺寸:长 L=100m ,宽 W=20m ,高 H=25m
  • 深弹杀伤半径 rkill=20m

2. 数学模型和公式推导

2.1 多枚深弹的投弹阵列设计

阵列投弹模式:

假设 9 枚深弹的投弹落点形成 3×3 的矩形阵列,阵列的中心对准潜艇的估计位置。

落点之间的间隔设为 dx 和 dy ,我们需要优化这些间隔,以使至少一枚深弹命中潜艇的概率最大化。

深弹落点的概率分布:

咕咕咕~

2.2 命中概率的计算

单个深弹命中概率计算:

假设每个深弹落点处的水平误差 Xi,Yi 服从独立正态分布 和N(xi,σ2)和N(yi,σ2) 。

深弹在平面内落点的命中概率和深度命中概率的联合计算类似于问题 2,但需要针对每个深弹进行独立计算。

至少一枚深弹命中概率:

假设每枚深弹独立,则至少一枚深弹命中潜艇的概率为: 至少一枚命中所有深弹都未命中P(至少一枚命中)=1−P(所有深弹都未命中)

如果 P_i 表示第 i 枚深弹未命中潜艇的概率,则: 咕咕咕~

因此,至少一枚命中概率为:咕咕咕~

2.3 优化问题的数学表述

目标是找到最佳的定深引信引爆深度 d 和投弹间隔 dx,dy ,咕咕咕~

3. Python 代码实现

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import truncnorm
from scipy.integrate import dblquad

# 定义参数
L, W, H = 100, 20, 25  # 潜艇尺寸 (m)
sigma = 120  # 水平定位误差标准差 (m)
h0, sigma_z, l = 150, 40, 120  # 深度定位参数 (m)
r_kill = 20  # 深弹杀伤半径 (m)
n_bombs = 9  # 深弹数量

# 定义潜艇位置误差的概率密度函数
def pdf_xy(x, y, sigma):
    return (1 / (2 * np.pi * sigma ** 2)) * np.exp(-(x ** 2 + y ** 2) / (2 * sigma ** 2))

def pdf_z(v, h0, sigma_z, l):

	# 咕咕咕



# 计算单枚深弹的命中概率
def compute_single_bomb_hit_probability(x, y, d, h0, sigma_z, l, r_kill):
    # 水平位置误差
    p1_xy, _ = dblquad(pdf_xy, x - L/2, x + L/2, lambda x: y - W/2, lambda x: y + W/2, args=(sigma,))

    # 深度误差
    a, b = (l - h0) / sigma_z, (d - h0) / sigma_z  # 截尾区间
    p1_z = truncnorm.cdf(b, a, np.inf, loc=h0, scale=sigma_z)

    # 计算P1
    P1 = p1_xy * p1_z

    # 计算P2和P3

	# 咕咕咕



    # 计算P3 (在平面范围外)
    p3_xy, _ = dblquad(lambda x, y: pdf_xy(x, y, sigma), x + W/2, x + W/2 + 500, lambda x: y - W/2, lambda x: y + W/2)
    P3 = p3_xy * p2_kill

    return P1 + P2 + P3

# 计算多枚深弹的命中概率
def compute_multiple_bombs_hit_probability(arrangement, d, h0, sigma_z, l, r_kill):
    hit_probabilities = []

	# 咕咕咕


    # 计算至少一枚深弹命中的概率
    all_miss_prob = np.prod([1 - p for p in hit_probabilities])
    return 1 - all_miss_prob

# 生成深弹阵列的落点位置
def generate_bomb_arrangement(dx, dy):
    x_vals = np.linspace(-dx, dx, 3)

	# 咕咕咕



# 优化命中概率
def optimize_multiple_bombs_hit_probability(h0, sigma_z, l, r_kill):
    best_p_hit = 0
    best_depth = h0
    best_dx, best_dy = 0, 0

    d_values = np.linspace(h0 - 50, h0 + 50, 20)
    dx_values = np.linspace(20, 100, 10)
    dy_values = np.linspace(20, 100, 10)

    for d in d_values:
        for dx in dx_values:
            for dy in dy_values:
                arrangement = generate_bomb_arrangement(dx, dy)
                p_hit = compute_multiple_bombs_hit_probability(arrangement, d, h0, sigma_z, l, r_kill)

                if p_hit > best_p_hit:

	# 咕咕咕



    return best_depth, best_dx, best_dy, best_p_hit

# 进行优化计算

	# 咕咕咕

print(f"最佳定深引信引爆深度 d = {best_depth:.2f} m,最佳投弹间隔 (dx, dy) = ({best_dx:.2f}, {best_dy:.2f}) m,最大命中概率为 {best_p_hit:.4f}")

# 可视化
fig, ax = plt.subplots(figsize=(10, 8))
depths = np.linspace(h0 - 50, h0 + 50, 20)
intervals = np.linspace(20, 100, 10)
Z = np.zeros((len(depths), len(intervals)))

for i, d in enumerate(depths):


    for j, interval in enumerate(intervals):

	# 咕咕咕


        Z[i, j] = compute_multiple_bombs_hit_probability(arrangement, d, h0, sigma_z, l, r_kill)

c = ax.contourf(intervals, depths, Z, levels=20, cmap='viridis')
fig.colorbar(c, label='命中概率')
ax.set_title('不同定深引爆深度和投弹间隔下的命中概率')
ax.set_xlabel('投弹间隔 (m)')
ax.set_ylabel('定深引爆深度 (m)')
plt.scatter(best_dx, best_depth, color='red', label='最佳方案')
plt.legend()
plt.show()

4. 代码解释和高级可视化说明

  1. 代码逻辑
  2. 潜艇位置误差建模:利用正态分布和截尾正态分布描述潜艇位置误差。
  3. 命中概率计算:对每个深弹落点位置,计算其命中潜艇的概率。
  4. 组合概率计算:计算所有深弹中至少一枚命中潜艇的总概率。
  5. 优化目标:通过遍历不同的定深引信引爆深度和投弹间隔组合,寻找最大化综合命中概率的最优方案。
  6. 可视化
  7. 命中概率与引爆深度和投弹间隔的关系图:使用 Matplotlib 绘制命中概率随引爆深度和投弹间隔变化的等高线图,并用红点标记出最佳投弹方案。
  8. 该图形化表示展示了不同的定深引爆深度和投弹间隔组合对最终命中概率的影响,为策略优化提供了直观依据。

24国赛赛前准备:

论文中好的可视化内容至关重要 这里先分享一些国赛数学建模中的常用的可视化内容

数学建模中的可视化分析是一个重要的环节,它帮助研究者和观众更好地理解数据和模型的结果。以下是一些进阶的可视化分析方法和算法,以及相应的Python代码示例:

蒙特卡罗算法

算法介绍:蒙特卡罗算法是一种基于概率和随机性的方法,通过生成大量随机样本来模拟复杂系统的行为或计算数值解。它不依赖于严格的解析解,而是通过随机采样来估计问题的结果。例如,在估计圆周率π的值时,可以在一个正方形内随机生成点,然后计算落在内切圆内的点的比例,利用这个比例估计π的值。蒙特卡罗算法广泛应用于金融风险分析、物理学中的粒子行为模拟、复杂系统的概率分析等领域.

算法示例:

我们可以使用蒙特卡罗算法来估计三维图形的体积。下面是一个简单的Python程序,它使用蒙特卡罗算法来估计一个球体的体积,并使用Matplotlib库进行三维可视化。

import random
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np

def monte_carlo_volume(n):
    count = 0
    for i in range(n):
        x = random.uniform(-1, 1)
        y = random.uniform(-1, 1)
        z = random.uniform(-1, 1)
        if x**2 + y**2 + z**2 <= 1:
            count += 1
    return (count / n) * 8

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

n = 10000
volume = monte_carlo_volume(n)
print(f"Estimated volume of the sphere: {volume:.4f}")

xs = []
ys = []
zs = []
colors = []
for i in range(n):
    x = random.uniform(-1, 1)
    y = random.uniform(-1, 1)
    z = random.uniform(-1, 1)
    if x**2 + y**2 + z**2 <= 1:
        xs.append(x)
        ys.append(y)
        zs.append(z)
        colors.append(z)

ax.scatter(xs, ys, zs, c=colors, cmap='coolwarm', marker='o')
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')

plt.show()
  • 程序首先定义了一个名为monte_carlo_volume的函数,该函数使用蒙特卡罗算法来估计球体的体积。
  • 然后,程序使用monte_carlo_volume函数来估计球体的体积,并将结果打印到控制台上。
  • 接下来,程序使用Matplotlib库创建一个3D散点图,该图显示了球体的随机采样点,并根据每个点的z坐标值进行颜色渐变。

可视化效果如下:

部分依赖分析图(Partial Dependence Plot)

部分依赖分析图(Partial Dependence Plot,简称PDP)是一种用于解释复杂机器学习模型的可视化工具。PDP可以帮助我们理解一个或两个特征对模型预测结果的影响,而忽略掉其他特征的影响。这种分析对于提高模型的透明度和可解释性非常有价值。

主要特点和用途

1. 展示特征影响:PDP显示了在保持模型中所有其他特征固定的情况下,一个特征(或两个特征的交互)对预测结果的平均影响。

2. 可解释性:对于复杂的模型(如随机森林、梯度提升机等),PDP帮助解释单个特征如何影响模型的预测,提高了模型的可解释性。

3. 非线性关系和交互效应:PDP特别适合揭示特征与预测目标之间的非线性关系,以及不同特征之间的交互效应。

工作原理

PDP通过对数据集中的特定特征进行多次采样,并保持其他特征不变,然后计算模型对这些样本的预测平均值来生成。

PDP是机器学习领域中一个非常有用的工具,尤其是在需要解释复杂模型的决策过程时。通过使用PDP,数据科学家和分析师可以更好地理解和信任他们的模型预测。图像: 部分依赖分析图的生成需要一个训练好的模型和特定的数据集,这里使用一个简单的合成数据集和一个基本的分类模型来演示。

这是一个部分依赖分析图的示例,它展示了在一个简单的合成数据集上训练的梯度提升分类器中,特征0、特征1以及它们的组合(特征0和1)对模型预测的影响。这种类型的图表非常有用于解释机器学习模型的行为,特别是在识别哪些特征对模型预测最有影响时。

生成这个图表的Python代码如下:

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.inspection import plot_partial_dependence
from sklearn.datasets import make_classification

# 创建合成数据集
X, y = make_classification(n_samples=100, n_features=5, random_state=42)

# 训练梯度提升分类器
clf = GradientBoostingClassifier(n_estimators=50, random_state=42).fit(X, y)

# 绘制部分依赖图
features = [0, 1, (0, 1)]
plot_partial_dependence(clf, X, features, grid_resolution=20)

# 显示图形
plt.suptitle('Partial Dependence Plots')
plt.show()

国赛的进阶可视化图表:成对关系图

成对关系图是一种可视化技术,用于显示数据集中每个变量之间的关系。它通常用于探索数据集中的相关性和分布情况。成对关系图可以用于许多不同的应用程序,例如数据分析、生物学、金融等领域。

下面是一个简单的Python程序,它使用Seaborn库创建一个成对关系图,该图显示了Iris数据集中每个变量之间的关系: iris数据集是一个经典的机器学习数据集,用于分类和聚类等任务。它包含了150个样本,每个样本有四个特征和一个标签。特征是鸢尾花的萼片和花瓣的长度和宽度,单位是厘米。标签是鸢尾花的三个品种之一:山鸢尾、变色鸢尾和维吉尼亚鸢尾。这个数据集是由英国统计学家和生物学家Fisher在1936年发表的论文中提出的,是最早用于评估分类方法的数据集之一。iris数据集在统计学和机器学习领域都有广泛的应用和影响,被认为是一个简单而优美的数据集。

这个程序使用Seaborn库创建一个成对关系图,该图显示了Iris数据集中每个变量之间的关系。程序使用sns.load_dataset函数加载Iris数据集,并使用sns.pairplot函数创建一个成对关系图。

import seaborn as sns
import matplotlib.pyplot as plt

iris = sns.load_dataset("iris")

sns.pairplot(iris, hue="species", markers=["o", "s", "D"])

plt.show()

成对关系图的应用场景包括但不限于以下几个方面:

  1. 数据分析:成对关系图可以用于显示数据集中每个变量之间的关系,帮助数据分析人员更好地理解数据。
  2. 生物学:成对关系图可以用于显示基因表达数据的密度和分布情况,帮助生物学家更好地理解基因表达数据。
  3. 金融:成对关系图可以用于显示股票价格的密度和分布情况,帮助投资者更好地理解股票市场。

2024 ICM 问题 D: 五大湖水问题

题目翻译:

国际联合委员会(IJC)请求贵公司,国际网络控制建模公司(ICM),提供支持,协助管理和控制机制(附录中指示的两个大坝 - 补偿工程和摩西-桑德斯大坝),这些机制直接影响了五大湖流网络中的水位。您的ICM主管已授权您的团队负责开发模型和管理计划,以实施该模型。您的主管指出,有几个考虑因素可能有助于实现这一目标,首先是建立五大湖的网络模型,以及从苏必利尔湖到大西洋的连接河流的模型。您的主管还提到了一些其他可选的考虑因素或问题,包括:

  • 在一年的任何时候确定五大湖的最佳水位,考虑各利益相关者的愿望(对于每个利益相关者来说,成本和效益可能是不同的)。
  • 建立算法,根据湖泊的流入和流出数据来维持五大湖的最佳水位。
  • 了解您的控制算法对两个控制大坝的流出的敏感性。根据2017年的数据,您的新控制是否会导致对于各利益相关者来说满意或更好于当年实际记录的水位?
  • 您的算法对环境条件的变化(例如降水、冬季积雪、冰堵)有多敏感?
  • 将您的广泛分析仅集中在影响安大略湖的利益相关者和因素上,因为最近对该湖的水位管理产生了更多关切。

IJC还对您使用的历史数据以支持您的模型和建立参数感兴趣,因为他们希望比较您的管理和控制策略与以前的模型的差异。请向IJC领导层提交一份一页的备忘录,以传达您的模型的关键特点,以说服他们选择您的模型。

您的PDF解决方案总页数不得超过25页,其中包括:

  • 一页摘要表,清楚描述您解决问题的方法以及您的分析在问题背景下的最重要结论。
  • 目录。
  • 您的完整解决方案。
  • 一页备忘录。
  • 参考文献列表。
  • AI使用报告(如果使用AI)。

注意:ICM提交的完整解决方案没有特定的最低页数要求。您可以使用总共不超过25页的页面来包含您的解决方案工作和任何其他您想包括的信息(例如:绘图、图表、计算、表格)。我们接受部分解决方案。我们允许谨慎使用AI,例如ChatGPT,尽管使用AI并不是解决此问题的必要条件。如果选择使用生成式AI,您必须遵守COMAP的AI使用政策。这将导致您必须将AI使用报告添加到您的PDF解决方案文件的末尾,不计入您解决方案的总25页限制。

补充内容:北美的五大湖是世界上最大的淡水湖群。这些湖泊及其连接的水道构成了一个庞大的流域,涵盖了美国和加拿大的许多大型城市区域,具有多样的气候和地方性天气条件。

五大湖的水资源被用于多种目的,包括捕鱼、娱乐、发电、饮用、航运、动植物栖息地、建设、灌溉等。因此,有许多利益相关方对五大湖的水资源管理有着浓厚的兴趣。特别是,如果五大湖排放或蒸发的水量过少,则可能导致洪水灾害,沿岸的家园和商业设施会受到影响;如果排放的水量过多,则大型船舶无法通过水道进行物资运输,影响当地经济。主要问题是调节湖泊水位,使所有利益相关方都能从中受益。

每个湖泊的水位由流入和流出湖泊的水量决定。这些水位是温度、风、潮汐、降水、蒸发、湖底地形(湖底形状)、河流流量和径流、水库政策、季节循环和长期气候变化等复杂相互作用的结果。在五大湖水系的水流控制机制中,有两个主要的控制装置——苏锡特运河的补偿工程和位于康沃尔的摩西-桑德斯大坝。

尽管可以人为控制两座控制大坝、许多渠道和运河以及流域水库,但降雨、蒸发、侵蚀、冰堵等水流现象的速率却超出了人类的操控范围。当地政策可能会产生意料之外的效果,季节性和环境变化也会影响水流域,进而影响该地区生态系统的健康,影响湖泊及周围地区的动植物以及流域居民的健康。尽管五大湖似乎有规律的年度模式,但水位的正常波动两到三英尺就能显著影响某些利益相关方。

这个动态网络流问题非常“棘手”,因为它涉及到相互依赖、复杂的要求和内在的不确定性。对于五大湖的问题,我们面临着不断变化的动态和利益相关方之间的冲突利益。

问题重述:

北美的五大湖是世界上最大的淡水湖群。这些湖泊及其连接的水道构成了一个庞大的流域,涵盖了美国和加拿大的许多大型城市区域,具有多样的气候和地方性天气条件。

五大湖的水资源被用于多种目的,包括捕鱼、娱乐、发电、饮用、航运、动植物栖息地、建设、灌溉等。因此,有许多利益相关方对五大湖的水资源管理有着浓厚的兴趣。特别是,如果五大湖排放或蒸发的水量过少,则可能导致洪水灾害,沿岸的家园和商业设施会受到影响;如果排放的水量过多,则大型船舶无法通过水道进行物资运输,影响当地经济。主要问题是调节湖泊水位,使所有利益相关方都能从中受益。

每个湖泊的水位由流入和流出湖泊的水量决定。这些水位是温度、风、潮汐、降水、蒸发、湖底地形(湖底形状)、河流流量和径流、水库政策、季节循环和长期气候变化等复杂相互作用的结果。在五大湖水系的水流控制机制中,有两个主要的控制装置——苏锡特运河的补偿工程和位于康沃尔的摩西-桑德斯大坝。

尽管可以人为控制两座控制大坝、许多渠道和运河以及流域水库,但降雨、蒸发、侵蚀、冰堵等水流现象的速率却超出了人类的操控范围。当地政策可能会产生意料之外的效果,季节性和环境变化也会影响水流域,进而影响该地区生态系统的健康,影响湖泊及周围地区的动植物以及流域居民的健康。尽管五大湖似乎有规律的年度模式,但水位的正常波动两到三英尺就能显著影响某些利益相关方。

这个动态网络流问题非常“棘手”,因为它涉及到相互依赖、复杂的要求和内在的不确定性。对于五大湖的问题,我们面临着不断变化的动态和利益相关方之间的冲突利益。

问题分析

重点内容分析

  • 复杂的水资源管理需求:五大湖水资源的多元化用途使得管理工作复杂且具有挑战性。
    动态变化和不确定性:水位受多种自然和人为因素影响,包括气候变化、降水量、蒸发率等,这些因素的不确定性增加了水资源管理的复杂度。
  • 利益相关方的冲突:不同利益相关方对水资源的需求可能相互冲突,如防洪需求与保证航运需求之间的平衡。
    控制机制的局限性:虽然有苏锡特运河的补偿工程和摩西-桑德斯大坝等控制机制,但自然现象如降雨、蒸发等超出人类控制。
  • 生态系统的健康:水位的变化直接影响生态系统的健康,包括动植物的生存和居民的生活条件。
  • 模型的复杂性:“棘手”的问题特征,需要考虑多种相互依赖和变量,以及如何在保护环境和满足各方需求之间找到平衡。

建模方案分析

针对国际联合委员会(IJC)提出的五大湖水位控制机制的管理和模型需求,我们可以采用以下几个步骤和策略来开发一个综合的数学建模方案:

针对国际联合委员会(IJC)提出的五大湖水位控制机制的管理和模型需求,我们可以采用以下几个步骤和策略来开发一个综合的数学建模方案:

1. 建立五大湖网络流模型

首先,我们需要构建一个包含五大湖及其连接河流的网络流模型,从苏必利尔湖到大西洋。该模型应能够模拟水流从一个湖泊到另一个湖泊的过程,以及通过补偿工程和摩西-桑德斯大坝的流出控制。

模型选择与创新点:

  • 动态系统模型:利用动态系统理论,考虑时间变化对湖泊水位的影响,建立差分方程微分方程组来描述水位随时间的动态变化。
  • 图论与网络流:将五大湖系统视为一个网络,每个湖泊是一个节点,节点间的连接代表水流。使用图论中的最小费用最大流算法来确定最优水流路径和量。

2. 确定五大湖的最优水位

考虑到不同利益相关方的需求,我们需要定义一个多目标优化问题,以在满足所有相关方需求的前提下,找到每个湖泊在年度内的最优水位。

创新方法:

  • 多目标规划(MOP):使用多目标规划方法,将各利益相关方的成本和收益作为目标函数,寻找一个满足所有目标的最优解或Pareto前沿。
  • 模糊逻辑控制器:为了处理不确定性和模糊性,使用模糊逻辑控制器来平衡各方的需求,特别是在对不同环境条件敏感度的评估中。

3. 控制算法的建立与敏感性分析

开发算法以根据流入和流出数据维持五大湖的最优水位,并对控制算法进行敏感性分析,以评估其对环境变化的响应。

创新技术:

  • 机器学习与预测模型:利用机器学习技术,如LSTM神经网络,对历史数据进行学习,预测未来的水位变化,以指导水位控制策略的调整。
  • 环境敏感性分析:利用蒙特卡罗模拟或其他随机模拟方法,评估模型对降水、冬季积雪、冰堵等环境条件变化的敏感性。

4. 针对安大略湖的专项分析

鉴于对安大略湖水位管理的最近关注,我们将对该湖的利益相关方和影响因素进行深入分析,并根据这些分析调整我们的模型和管理计划。

创新策略:

  • 案例研究分析:对安大略湖的历史水位管理案例进行深入研究,从中提取经验教训,以改进当前的水位管理策略。
  • 适应性管理框架:建立一个适应性管理框架,允许根据实时数据和环境变化动态调整水位控制策略。

赛题解答

题目一:确定五大湖在一年中的任何时间的最佳水位

对于上述模型和算法,我们可以从数学公式的角度进一步细化和解释各个变量及其关系。以下是对关键数学模型和公式的详细解释:

动态系统模型

微分方程描述水位变化

dWdt=I(t)−O(t)−E(t)+P(t) - W: 水位(米) - t: 时间(日) - I(t): 流入量(立方米/秒) - O(t): 流出量(立方米/秒),受大坝控制策略影响 - E(t): 蒸发量(立方米/秒),受气候条件影响 - P(t): 降水量(立方米/秒)

多目标规划(MOP)

目标函数

min/maxfi(W)∀i∈{1,2,...,n}

  • fi(W) : 第i个利益相关方的目标函数,可以是经济收益、环境保护指标等
  • n : 利益相关方的总数

控制算法敏感性分析

敏感性分析模型

Si=∂O(t)∂Xi

- Si : 对于第i个环境因素(如降水量、冬季积雪量等)的敏感性指标

- Xi : 第i个环境因素的量

机器学习预测模型

LSTM神经网络(简化表示)

Wt+1=LSTM(Wt,It,Et,Pt;Θ)

- Wt+1 : 下一时间步的预测水位

- Wt,It,Et,Pt : 当前时间步的水位、流入量、蒸发量、降水量

- Θ : LSTM模型的参数

可视化分析

对于可视化展示,我们将使用Matplotlib库进行数据的图形展示,但实际的数学模型和算法背后的公式是上述描述的基础。

Python代码示例

对于上述的公式,Python代码主要是对数据进行处理和可视化,而不直接反映数学模型的复杂性。例如,动态水位变化图使用了动画功能来展示水位随时间的变化,这需要结合实际的数据和预测模型来实现。对于敏感性分析,可以通过改变环境因素的输入值,观察输出的变化来近似计算S_i。

通过将这些公式应用于具体的数据和情境,我们可以构建一个综合的、响应环境变化的五大湖水位管理模型,并通过可视化手段展示模型的预测和分析结果,以此来支持水资源管理的决策过程。

解题思路

为了确定五大湖在年度内任何时间的最优水位,并考虑不同利益相关方的需求,我们将采用多目标优化(Multi-Objective Optimization, MOO) 的方法。多目标优化能够帮助我们同时考虑多个利益相关方的成本和收益,并找到一个满足所有利益相关方需求的平衡解。

步骤一:定义目标函数和约束条件

  1. 目标函数:设定多个目标函数以代表不同利益相关方的需求。例如,对于捕鱼业,目标函数可能是最大化鱼类资源的可持续性;对于航运业,目标函数可能是确保足够的水位以支持大型船舶的通行。
  2. 约束条件:包括水位的物理限制、环境保护标准等。

步骤二:模型构建

  • 模型:我们可以使用线性规划(linear programming) 或非线性规划(non-linear programming) 来构建我们的模型,具体取决于目标函数和约束条件的性质。

步骤三:求解与分析

  • 求解:使用适合MOO的算法,如遗传算法(Genetic Algorithm, GA)粒子群优化(Particle Swarm Optimization, PSO) 等,来寻找最优解或Pareto前沿。
  • 分析:评估不同解决方案对各方利益的影响,以及它们在满足环境保护和经济发展之间的平衡。

Python代码实现与可视化例程

假设我们正在考虑两个利益相关方:航运业和环保组织。我们可以简化模型,假设每个利益相关方的需求可以通过一个目标函数来量化,并尝试找到一个平衡点。

定义目标函数:

  1. 航运业的目标:最大化水位(以支持大型船舶通行)。
  2. 环保组织的目标:维持水位在一个生态安全的范围内。

为了简化问题,我们使用线性函数作为例子,并尝试找到一个折衷解。

Python代码示例:

以下代码示例使用matplotlib库进行可视化,展示了两个目标函数在目标空间中的表示,并尝试找到Pareto前沿。

import numpy as np
import matplotlib.pyplot as plt

# 目标函数
def shipping_objective(water_level):
    # 省略部分内容 # 航运业希望水位尽可能高

def environmental_objective(water_level):
    return 100 - abs(water_level - 50)  # 环保组织希望水位接近50

water_levels = np.linspace(30, 70, 400)
# 省略部分内容
# 省略部分内容

# 可视化
plt.figure(figsize=(10, 6))
plt.plot(water_levels, shipping_scores, label='Shipping Industry')
plt.plot(water_levels, environmental_scores, label='Environmental Protection')
plt.xlabel('Water Level')
plt.ylabel('Objective Score')
plt.title('Objective Functions for Different Stakeholders')
plt.legend()
plt.grid(True)
plt.show()

该代码模拟了在不同水位下,航运业和环保组织的目标函数得分,通过可视化这两个函数,我们可以直观地看到不同水位对两个不同利益相关方的影响。实际应用中,我们需要采用更复杂的模型

题目二:根据湖泊的流入和流出数据,建立五湖保持最佳水位的算法。

解题思路

为了建立算法以维持五大湖的最优水位,我们需要考虑湖泊的流入和流出数据,并且能够实时调整以适应环境变化。这一任务要求我们开发一个动态的水位控制系统,该系统能够根据当前的水位、预测的降水量、蒸发率等因素,计算出流入和流出量的最佳比例。

步骤一:数据收集与预处理

  1. 数据收集:收集五大湖的历史流入流出数据,包括降水量、蒸发量、通过控制设施(如大坝)的流量等。
  2. 预处理:对收集到的数据进行清洗和标准化处理,以便用于模型训练和分析。

步骤二:模型构建

  • 省略部分内容
  • ......

步骤三:算法实现

  • 遗传算法(GA):使用遗传算法等启发式算法求解优化问题,找到维持最优水位的控制策略。
  • 模型验证:通过历史数据测试算法的有效性,确保算法能够在不同的环境条件下稳定工作。

步骤四:可视化展示

  • 动态水位变化图:展示在算法控制下,五大湖水位随时间的变化情况。
  • 预测与实际值对比图:比较模型预测的水位与实际记录的水位,以评估模型的准确性。

Python代码实现与可视化例程

假设我们已经使用LSTM模型对未来一段时间内的流入量进行了预测,现在我们需要制定一个水位控制策略,并且可视化预测的水位变化。

Python代码示例:

若我们已经有了一个LSTM模型的预测结果,并使用简单的控制逻辑来模拟水位控制过程。

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation

# 模拟数据:未来30天的流入量预测(单位:万立方米)
inflow_pred = np.random.normal(loc=200, scale=50, size=30)

# 假设的初始水位和目标水位(单位:米)
initial_water_level = 180
target_water_level = 185

# 模拟控制策略:基于当前水位与目标水位的差距调整流出量
def control_strategy(current_level, target_level, inflow):
    # 基础流出量
    outflow = inflow
    # 控制逻辑:如果当前水位低于目标水位,减少流出量;反之增加流出量
    if current_level < target_level:
        outflow *= 0.9  # 减少流出量
    elif current_level > target_level:
        outflow *= 1.1  # 增加流出量
    return outflow

# 模拟水位变化
water_levels = [initial_water_level]
for day in range(1, 30):
    inflow = inflow_pred[day]
    outflow = control_strategy(water_levels[-1], target_water_level, inflow)
    # 水位变化 = 流入量 - 流出量
    # 省略部分内容

# 可视化
plt.figure(figsize=(10, 6))
plt.plot(water_levels, label='Predicted Water Level')
plt.axhline(y=target_water_level, color='r', linestyle='--', label='Target Water Level')
plt.xlabel('Day')
plt.ylabel('Water Level (m)')
plt.title('Predicted Water Level with Control Strategy')
plt.legend()
plt.grid(True)
plt.show()

该代码展示了在简化的控制策略下,未来30天内的预测水位变化情况,以及与目标水位的对比。在实际应用中,控制策略将更加复杂,需要考虑更多因素,如天气预报、季节变化等。此外,模型的训练和验证是至关重要的步骤,需要大量的历史数据来进行。

可视化二:水位变化对环境影响的热力图

这个图表将利用热力图展示不同区域在不同水位变化下的环境影响情况。

import numpy as np
import matplotlib.pyplot as plt

# 模拟数据
# ......
# ......
# 省略部分内容
# ......
# ......

# 可视化
plt.figure(figsize=(8, 6))

# ......

plt.colorbar(cp)
plt.title('Environmental Impact Heatmap due to Water Level Changes')
plt.xlabel('Area')
plt.ylabel('Water Level Change (m)')
plt.show()

题目三:新控制方法是否会让各利益相关者满意或优于当年实际记录的水位?

解题思路

问题3要求我们理解控制算法对两座控制大坝流出量的敏感性,并利用2017年的数据来验证新控制措施是否能为各方利益相关者带来满意或更优的水位控制结果。这要求我们进行一系列的敏感性分析和模型验证工作。

步骤一:建立控制算法模型

首先,我们需要建立一个控制算法模型,该模型可以根据实时数据动态调整两座控制大坝的流出量,以达到最优水位控制。

  • 模型构建:利用基于规则的控制逻辑或机器学习方法,如强化学习,来设计控制算法。

步骤二:进行敏感性分析

  • 敏感性分析:分析控制算法对关键参数(如降水量、蒸发率、季节变化)的敏感性,以及这些参数变化对大坝流出量调整策略的影响。

步骤三:利用2017年数据进行模型验证

  • 模型验证:使用2017年的实际水位数据作为基准,验证控制算法的效果,并与实际记录的水位进行比较分析。

步骤四:可视化分析

  • 可视化:展示控制算法预测的水位与2017年实际记录水位的对比,以及敏感性分析的结果。

Python代码实现与可视化例程

以下是一个简化的示例,展示如何进行敏感性分析和模型验证的可视化。

假设我们已经有了一个基本的控制算法模型(这里使用简化的模拟数据进行展示),我们将使用2017年的模拟数据来验证模型的效果,并进行敏感性分析。

import numpy as np
import matplotlib.pyplot as plt

# 模拟2017年的实际水位数据(单位:米)
actual_water_levels = np.random.normal(loc=180, scale=5, size=365)

# 模拟控制算法预测的水位数据
predicted_water_levels = actual_water_levels + np.random.normal(loc=0, scale=1, size=365)

# 敏感性分析:假设降水量变化对水位的影响
precipitation_change = np.linspace(-10, 10, 365)
sensitivity_analysis = predicted_water_levels + 0.1 * precipitation_change

# 可视化
plt.figure(figsize=(14, 7))
plt.plot(actual_water_levels, label='Actual Water Levels', color='blue', alpha=0.7)
plt.plot(predicted_water_levels, label='Predicted Water Levels', color='red', alpha=0.7)
plt.plot(sensitivity_analysis, label='Sensitivity Analysis', color='green', alpha=0.7, linestyle='--')
plt.xlabel('Day of the Year')
plt.ylabel('Water Level (m)')
plt.title('Water Level Control Model Validation & Sensitivity Analysis (2017)')
plt.legend()
plt.grid(True)
plt.show()

可视化:水位变化与经济影响的关系图

不同水位变化下经济影响的变化情况

这个图表将展示不同水位变化下,经济影响的变化情况。

import numpy as np
import matplotlib.pyplot as plt

# 数据准备
# ......
# ......

# 可视化
plt.figure(figsize=(10, 6))
plt.plot(water_levels, economic_impacts, 'r-', linewidth=2, label='Economic Impact')
plt.fill_between(water_levels, economic_impacts, color='red', alpha=0.1)
plt.title('Economic Impact of Water Level Changes in Lake Ontario')
plt.xlabel('Water Level Change (m)')
plt.ylabel('Economic Impact')
plt.legend()
plt.grid(True)
plt.show()

import numpy as np
import matplotlib.pyplot as plt

# 模拟数据
x = np.linspace(-3, 3, 100)
# ......
# ......
Z = np.exp(-X**2 - Y**2)

# 可视化
plt.figure(figsize=(8, 6))
cp = plt.contourf(X, Y, Z, levels=20, cmap='RdYlGn')
plt.colorbar(cp)
plt.title('Environmental Impact Heatmap due to Water Level Changes')
plt.xlabel('Area')
plt.ylabel('Water Level Change (m)')
plt.show()

这段代码首先模拟了2017年的实际水位数据和控制算法预测的水位数据,然后进行了一个简单的敏感性分析,模拟了降水量变化对水位的影响。最后,通过可视化方式展示了实际水位、预测水位和敏感性分析结果的比较。

在实际应用中,控制算法需要基于复杂的数学模型和大量历史数据进行训练和优化。敏感性分析也应更加细致,考虑多种环境因素的影响。这只是一个展示分析思路和可视化方法的简化示例。

题目四:你的算法对环境条件的变化(如降水、冬季积雪、冰塞)有多敏感?

解题思路

为了评估我们的算法对环境条件变化(如降水、冬季积雪、冰堵)的敏感性,我们需要构建一个模型,该模型能够根据这些环境因素的变化动态调整水位控制策略。这一过程包括:

步骤一:模型构建

  • 环境因素影响模型:建立一个数学模型来描述环境条件(如降水量、积雪量、冰堵等)对水位的影响。这可能包括水文学模型、气候模型等。

步骤二:敏感性分析

  • 敏感性分析方法:采用敏感性分析技术,如Sobol方法蒙特卡洛模拟,来量化环境条件变化对算法输出(即控制大坝的流出量)的影响程度。

步骤三:实施与可视化

  • 可视化:利用Python进行数据分析和可视化,展示算法对环境变化的响应情况。

Python代码实现与可视化例程

算法对环境条件变化的敏感性分析

以下示例代码展示了如何利用Python进行敏感性分析,并通过可视化展示算法对环境条件变化(以降水量为例)的敏感性。

import numpy as np
import matplotlib.pyplot as plt

# 省略部分内容
# .....

# 假设算法对降水量的响应:水位变化速率(简化模型)
response_rate = 0.05 * precipitation - 2

# 敏感性分析结果可视化
plt.figure(figsize=(10, 6))
plt.plot(precipitation, response_rate, color='darkorange')
plt.xlabel('Precipitation (mm)')
plt.ylabel('Response Rate (m/day)')
plt.title('Algorithm Sensitivity to Precipitation Changes')
plt.grid(True)
plt.show()

# 进一步的分析:比较不同环境条件下的响应
# 模拟积雪量变化对响应率的影响(简化示例)
snowpack = np.linspace(0, 50, 100)
response_rate_snowpack = 0.03 * snowpack - 1

# 可视化比较
plt.figure(figsize=(10, 6))
plt.plot(precipitation, response_rate, label='Precipitation', color='darkorange')
plt.plot(snowpack, response_rate_snowpack, label='Snowpack', color='dodgerblue')
plt.xlabel('Environmental Condition')
plt.ylabel('Response Rate (m/day)')
plt.legend()
plt.title('Algorithm Sensitivity to Different Environmental Conditions')
plt.grid(True)
plt.show()

在这个示例中,我们首先模拟了降水量变化对水位控制算法响应率的影响,然后扩展到考虑积雪量变化的影响。通过这种方式,我们可以直观地比较算法对不同环境条件变化的敏感性。实际应用中,敏感性分析会更加复杂,需要考虑多种环境因素和它们的交互效应,以及采用更精细的数学模型来精确描述这些影响。这只是一个用于展示基本思路和方法的简化示例。

热防护服是高温环境工作人群的重要保障,本文通过建立数学模型对多层热防护织物内部传热规律进行研究,建立防护服装内部的热传递模型,从而解决外界环境温度一定时,防护服各层随时间变化的温度分布问和各层织物材料的最优厚度问。 假人处于恒高温环境中,不考虑防护服织物的边缘热量损失,且人体和防护服的空气间隔很小,忽略空气的自然对流,只考虑热传导;故可以把织物视为导热多层平面,且属于非稳态导热过程。建立“高温环境-防护服-假人体表”系统;由傅里叶定律描述导热速率,将温度的变化转是能量传递的结果,将其看作电磁波的辐射和介质中对电磁波的传输问。 防护服中的温度分布由时间和防护服与外界热源相对位置二者共同决定的二元函数,因为二元偏微分方程的解析解无法精确求出,所以对时间进行离散化分析,分析以一秒为单位时间的温度变化与位置的关系,从而对问进行简化。 针对问一,将各层的导热过程抽象简化处理转换为平板中非稳态导热过程,在平板厚度的四周绝热良好时,从传热的角度上将问简化为一个一维传热问;从假人皮肤外侧的温度变化入手,根据热量的流向和生热情况从第Ⅳ层、第III层、第Ⅱ层、第Ⅰ层反向递推出和外界环境温度的关系,引入能温转换系数,建立假人皮肤外侧温度变化和外界温度的等式关系,最后利用最小二乘法设计程序,求出每一阶段的温度分布平差之后的结果,从而得到温度分布。 针对问二,考虑在一小时内该系统温度变化,用时间限制与温度阈值限制作为约束条件的规划问,沿用离散化分析手段,由假人体表温度逆推防护服第Ⅱ层厚度的表达式,建立其与外界温度的关系,并寻求满足条件下的最优解。 针对问三,考虑在给定半小时时间内该系统温度变化,添加更多的约束条件,对问二中的求解模型进行进一步优化,利用lingo寻找第Ⅱ、Ⅳ层厚度的最优解,并沿用前问中离散化分析手段,由假人体表温度逆推防护服相关设计参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值