欧拉函数求互质的个数
当时在res = res - res / i 出没有想明白, 其实是挺简单的, 就是一个公式, &(n) = n * (1 - 1 / p1) * (1 - 1 / p2) * … (1 - 1 / pr);
每次是res等于n,那么只更新res, 那么为什么不用n呢, 因为n有更大的用处, 那就是判断终点, 那什么是重点呢 ? 其实就是咱们要用的素数大于n的时候, 就应该停止了, 但是每次n的值是要更新的, 要更新到不能被本次的值乘以某个数得到, 意思是, 咱们的素数只用一次, 而且要把这个素数的k次幂全部用掉, 其实就是再以后不再用它了;
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <string>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
int euler(int n)
{
int res = n;
for (int i = 2; i <= n; i++)
{
if (n % i == 0)
{
res = res - res / i;
while (n % i == 0)
{
n /= i;
}
}
}
return res;
}
int main(void)
{
int n;
scanf("%d", &n);
printf("%d\n", euler(n));
return 0;
}
以下代码是https://blog.csdn.net/wrwhahah/ 的博主的:
请思考以下问题:
任意给定正整数n,请问在小于等于n的正整数之中,有多少个与n构成互质关系?(比如,在1到8之中,有多少个数与8构成互质关系?)
计算这个值的方法就叫做欧拉函数,以φ(n)表示。在1到8之中,与8形成互质关系的是1、3、5、7,所以 φ(n) = 4。
φ(n) 的计算方法并不复杂,但是为了得到最后那个公式,需要一步步讨论。
第一种情况
如果n=1,则 φ(1) = 1 。因为1与任何数(包括自身)都构成互质关系。
第二种情况
如果n是质数,则 φ(n)=n-1 。因为质数与小于它的每一个数,都构成互质关系。比如5与1、2、3、4都构成互质关系。
第三种情况
如果n是质数的某一个次方,即 n = p^k (p为质数,k为大于等于1的整数),则
比如 φ(8) = φ(2^3) =2^3 - 2^2 = 8 -4 = 4。
这是因为只有当一个数不包含质数p,才可能与n互质。而包含质数p的数一共有p^(k-1)个,即1×p、2×p、3×p、...、p^(k-1)×p,把它们去除,剩下的就是与n互质的数。
上面的式子还可以写成下面的形式:
可以看出,上面的第二种情况是 k=1 时的特例。
第四种情况
如果n可以分解成两个互质的整数之积,
n = p1 × p2
则
φ(n) = φ(p1p2) = φ(p1)φ(p2)
即积的欧拉函数等于各个因子的欧拉函数之积。比如,φ(56)=φ(8×7)=φ(8)×φ(7)=4×6=24。
这一条的证明要用到"中国剩余定理",这里就不展开了,只简单说一下思路:如果a与p1互质(a<p1),b与p2互质(b<p2),c与p1p2互质(c<p1p2),则c与数对 (a,b) 是一一对应关系。由于a的值有φ(p1)种可能,b的值有φ(p2)种可能,则数对 (a,b) 有φ(p1)φ(p2)种可能,而c的值有φ(p1p2)种可能,所以φ(p1p2)就等于φ(p1)φ(p2)。
第五种情况
因为任意一个大于1的正整数,都可以写成一系列质数的积。
根据第4条的结论,得到
再根据第3条的结论,得到
也就等于
这就是欧拉函数的通用计算公式。比如,1323的欧拉函数,计算过程如下: