python数据分析与挖掘学习笔记(4)-垃圾邮件自动识别

这篇学习笔记主要介绍如何用Python进行垃圾邮件的自动识别。通过切词、构造词典、转为稀疏向量、应用贝叶斯算法进行训练和测试,实现邮件的分类。贝叶斯算法根据特征计算类别概率,选择概率最大的类别作为预测结果。
摘要由CSDN通过智能技术生成

这是第四节的内容,主要为垃圾邮件自动识别与分类算法。

简单来说,对于垃圾邮件的预测实际上就是一个分类问题,要实现垃圾邮件的预测,我们可以对垃圾邮件进行特征提取,然后进行分类实现。

具体来说:

1. 对邮件进行切词

2. 构造词典

3. 转为稀疏向量

4. 实现贝叶斯算法

5. 通过贝叶斯算法训练数据

6. 通过贝叶斯算法测试数据

贝叶斯算法的原理就是,对于已知类别,通过特征计算该事物分别属于各个类的概率,概率最大的那个类别就是该事物的估计类别。

首先我们使用python实现贝叶斯算法:

class Bayes:
    def __init__(self):
        self.length = -1
        self.labelcount = dict()
        self.vect
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值