深度学习Week7——利用TensorFlow实现mnist手写数字识别

文章目录
深度学习Week7——利用TensorFlow实现mnist手写数字识别
一、前言
二、我的环境
三、前期工作
1、配置环境
2、导入数据
3、归一化
4、图片可视化
5、调整图片格式
四、构建CNN模型
五、编译模型
六、训练模型
七、预测
1、Accuracy图
2、指定图片识别
八、我的收获与疑惑

一、前言

由于pytorch后面的算法本人学习起来难度过大,我思考了一段时间觉得是自己的基础仍然不扎实,确实,由于本人目前才大二,很多内容不是很理解,但好在时间比较充裕,因此慢慢来比一味的推进度要更适合我,因此从本周开始,我打算重新开始第一周的打卡,去细致的学习神经网络程序,去理解他的网络结构,体会各个层的作用,为后面更复杂的学习打下基础。

二、我的环境

  • 电脑系统:Windows 10
  • 语言环境:Python 3.11.3
  • 编译器:Pycharm2023.2.3
    深度学习环境:Pytorch
    显卡及显存:RTX 3060 8G

三、前期工作

1、导入库并配置环境

import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0], "GPU")

这一步与pytorch第一步类似,我们在写神经网络程序前无论是选择pytorch还是tensorflow都应该配置好gpu环境。

2、 导入数据

导入mnist数据,依次分别为训练集图片(train_images)、训练集标签(train_labels)、测试集图片(test_images)、测试集标签(test_labels),mnist数据集是著名的公开数据集,我们可以直接用代码进行下载调用

from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()

3、归一化

Q:什么是归一化?如何归一化?
A:将像素的值标准化至0到1的区间内。(对于灰度图片来说,每个像素最大值是255,每个像素最小值是0,也就是直接除以255就可以完成归一化。)
Q:为什么要归一化
A:我们归一化的目的将数据转换成具有统一尺度的形式,使得不同特征之间的数值范围相似或相同,使得模型更容易学习到合适的权重,提高模型性能,同时可以将所有特征的尺度统一到一个范围内,避免特征之间不合理的权重分配。

train_images, test_images = train_images / 255.0, test_images / 255.0
# 查看数据维数信息
train_images.shape,test_images.shape,train_labels.shape,test_labels.shape

输出:

((60000, 28, 28), (10000, 28, 28), (60000,), (10000,))
这表明我们训练集有60000张28x28像素的图片,测试集有10000张28x28像素的图片

4、图片可视化

# 将数据集前20个图片数据可视化显示
# 进行图像大小为20宽、10长的绘图(单位为英寸inch)
plt.figure(figsize = (20,10))
for i in range(20):
    # 将整个figure分成2行10列,绘制第i + 1个子图。
    plt.subplot(2, 10, i + 1)
    # 设置不显示x轴刻度
    plt.xticks([])
    # 设置不显示y轴刻度
    plt.yticks([])
    # 设置不显示子图网格线
    plt.grid(False)
    # 图像展示,cmap为颜色图谱,"plt.cm.binary"为matplotlib.cm中的色表
    plt.imshow(train_images[i], cmap = plt.cm.binary)
    # 设置x轴标签显示为图片对应的数字
    plt.xlabel(train_labels[i])
# 显示图片
plt

在这里插入图片描述

5、调整图片格式

由于mnist图片是灰度图,他的通道数是1,因此我们将数据调整到我们需要的格式

train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))

train_images.shape,test_images.shape,train_labels.shape,test_labels.shape
((60000, 28, 28, 1), (10000, 28, 28, 1), (60000,), (10000,))

四 、构建CNN模型

这是一个重难点,在构建模型之前,我们先来看一看各层有什么作用以及网络结构图
在这里插入图片描述

  1. 输入层:
    输入层负责接收原始数据,将数据传递到网络中的第一层。
  2. 卷积层:
    卷积层使用卷积核对输入数据进行滤波操作,以提取图像中的特征。
  3. 池化层:
    池化层用于对卷积层的输出进行下采样,以减少数据的维度和计算量。
  4. Flatten层:
    Flatten层用于将多维的输入数据(如卷积层的输出)压缩成一维的向量。
    常用在卷积层到全连接层的过渡,将卷积层输出的特征图展平成一维向量,以便输入到全连接层中进行分类或回归等任务。
  5. 全连接层:
    全连接层起到“特征提取器”的作用,将前面层的特征表示映射到输出层。
  6. 输出层(Output Layer):
    输出层负责输出模型的预测结果。
model = models.Sequential([
    # 设置二维卷积层1,设置32个3*3卷积核,activation参数将激活函数设置为ReLu函数,input_shape参数将图层的输入形状设置为(28, 28, 1)
    # ReLu函数作为激活励函数可以增强判定函数和整个神经网络的非线性特性,而本身并不会改变卷积层
    # 相比其它函数来说,ReLU函数更受青睐,这是因为它可以将神经网络的训练速度提升数倍,而并不会对模型的泛化准确度造成显著影响。
    layers.Conv2D(32, (3, 3), activation = 'relu', input_shape = (28, 28, 1)),
    #池化层1,2*2采样
    layers.MaxPooling2D((2, 2)),                   
    # 设置二维卷积层2,设置64个3*3卷积核,activation参数将激活函数设置为ReLu函数
    layers.Conv2D(64, (3, 3), activation = 'relu'),  
    #池化层2,2*2采样
    layers.MaxPooling2D((2, 2)),                   
    
    layers.Flatten(),                    #Flatten层,连接卷积层与全连接层
    layers.Dense(64, activation = 'relu'), #全连接层,特征进一步提取,64为输出空间的维数,activation参数将激活函数设置为ReLu函数
    layers.Dense(10)                     #输出层,输出预期结果,10为输出空间的维数
])
# 打印网络结构
model.summary()

在这里插入图片描述

五、编译模型

# model.compile()方法用于在配置训练方法时,告知训练时用的优化器、损失函数和准确率评测标准
model.compile(
	# 设置优化器为Adam优化器,Adam是一种常用的自适应学习率优化算法,它能够自动调整学习率,适应不同参数的变化情况,从而更有效地训练模型。
    optimizer = 'adam',
	# 设置损失函数为交叉熵损失函数(tf.keras.losses.SparseCategoricalCrossentropy())
    # from_logits为True时,会将y_pred转化为概率(用softmax),否则不进行转换,通常情况下用True结果更稳定
    loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits = True),
    # 设置性能指标列表,将在模型训练时监控列表中的指标
    metrics = ['accuracy'])

六、训练模型

# 设置输入训练数据集(图片及标签)、验证数据集(图片及标签)以及迭代次数epochs
history = model.fit(
    # 输入训练集图片
	train_images, 
	# 输入训练集标签
	train_labels, 
	# 设置10个epoch,每一个epoch都将会把所有的数据输入模型完成一次训练。
	# 一个epoch表示模型使用训练集中的所有数据完成一次正向传播和反向传播的过程。
	epochs=10, 
	# 设置验证集,在每个epoch结束时,模型会使用验证集来计算验证损失和验证指标(如准确率)。
	# 这有助于检查模型是否过拟合或者欠拟合,并在需要时调整模型的超参数。
    validation_data=(test_images, test_labels))

在这里插入图片描述

七、预测

1、Accuracy图

import matplotlib.pyplot as plt

# 绘制训练过程中的准确率曲线
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
plt.show()

# 计算模型在测试集上的损失值和准确率
test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose = 2)
print(test_acc)

结果:
在这里插入图片描述

2、指定图片识别

# 预测第一张图片
plt.imshow(test_images[0])

在这里插入图片描述
准确!

八、我的疑问与收获

通过本周的学习,我深刻的了解了深度学习的网络结构,翻阅了很多相关技术文档和博客,一步一步来,这些东西很基础但是很重要,不能只关注进度而忽略了其中的重要知识!

  • 24
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 基于TensorFlowMNIST手写数字识别是一种机器学习技术,它可以通过训练模型来识别手写数字。MNIST是一个常用的数据集,包含了大量的手写数字图像和对应的标签。TensorFlow是一个流行的深度学习框架,可以用来构建和训练神经网络模型。通过使用TensorFlow,我们可以构建一个卷积神经网络模型,对MNIST数据集进行训练和测试,从而实现手写数字识别的功能。 ### 回答2: 随着机器学习技术的不断发展,MNIST手写数字识别已成为一个基础、常见的图像分类问题。TensorFlow是目前最流行的深度学习框架之一,广泛应用于图像处理、自然语言处理等领域,所以在TensorFlow实现MNIST手写数字识别任务是非常具有代表性的。 MNIST手写数字识别是指从给定的手写数字图像中识别出数字的任务。MNIST数据集是一个由数万张手写数字图片和相应标签组成的数据集,图片都是28*28像素的灰度图像。每一张图片对应着一个标签,表示图片中所代表的数字。通过对已经标记好的图片和标签进行训练,我们将构建一个模型来预测测试集中未知图片的标签。 在TensorFlow实现MNIST手写数字识别任务,可以通过以下步骤完成: 1. 导入MNIST数据集:TensorFlow中的tf.keras.datasets模块内置了MNIST数据集,可以通过如下代码导入:(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data() 2. 数据预处理:对数据进行标准化处理,即将灰度值范围从[0,255]缩放到[0,1]之间。同时将标签值进行独热编码,将每个数字的标签由一个整数转换为一个稀疏向量。采用以下代码完成数据预处理:train_images = train_images / 255.0 test_images = test_images / 255.0 train_labels = tf.keras.utils.to_categorical(train_labels, 10) test_labels = tf.keras.utils.to_categorical(test_labels, 10) 3. 构建模型:采用卷积神经网络(CNN)进行建模,包括卷积层、池化层、Dropout层和全连接层。建议采用可重复使用的模型方法tf.keras.Sequential()。具体代码实现为:model = tf.keras.Sequential([ tf.keras.layers.Conv2D(32, (3,3), activation='relu',input_shape=(28,28,1)), tf.keras.layers.MaxPooling2D((2,2)), tf.keras.layers.Flatten(), tf.keras.layers.Dropout(0.5)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(10, activation='softmax') ]) 4. 编译模型:指定优化器、损失函数和评估指标。可采用Adam优化器,交叉熵损失函数和准确率评估指标。具体实现代码如下:model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) 5. 训练模型:采用train()函数进行模型训练,完成代码如下:model.fit(train_images, train_labels, epochs=5, validation_data=(test_images, test_labels)) 6. 评估模型:计算测试准确率,完成代码如下:test_loss, test_acc = model.evaluate(test_images, test_labels) print('Test accuracy:', test_acc) 以上就是基于TensorFlowMNIST手写数字识别的简要实现过程。其实实现过程还可以更加复杂,比如调节神经元数量,添加卷积层数量等。总之采用TensorFlow框架实现MNIST手写数字识别是一个可行的任务,未来机器学习发展趋势将越来越向深度学习方向前进。 ### 回答3: MNIST手写数字识别是计算机视觉领域中最基础的问题,使用TensorFlow实现这一问题可以帮助深入理解神经网络的原理和实现,并为其他计算机视觉任务打下基础。 首先,MNIST手写数字数据集由28x28像素的灰度图像组成,包含了数字0到9共10个类别。通过导入TensorFlow及相关库,我们可以很容易地加载MNIST数据集并可视化: ``` import tensorflow as tf import matplotlib.pyplot as plt (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data() print("Training images:", train_images.shape) print("Training labels:", train_labels.shape) print("Test images:", test_images.shape) print("Test labels:", test_labels.shape) plt.imshow(train_images[0]) plt.show() ``` 在实现MNIST手写数字识别的神经网络模型中,最常用的是卷积神经网络(Convolutional Neural Networks,CNN),主要由卷积层、激活层、池化层和全连接层等组成。卷积层主要用于提取局部特征,激活层用于引入非线性性质,池化层则用于加速处理并减少过拟合,全连接层则进行最终的分类。 以下为使用TensorFlow搭建CNN实现MNIST手写数字识别代码: ``` model = tf.keras.Sequential([ tf.keras.layers.Conv2D(32, kernel_size=(3,3), activation='relu', input_shape=(28,28,1)), tf.keras.layers.MaxPooling2D(pool_size=(2,2)), tf.keras.layers.Conv2D(64, kernel_size=(3,3), activation='relu'), tf.keras.layers.MaxPooling2D(pool_size=(2,2)), tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(10, activation='softmax') ]) model.summary() model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) train_images = train_images.reshape((60000, 28, 28, 1)) train_images = train_images / 255.0 test_images = test_images.reshape((10000, 28, 28, 1)) test_images = test_images / 255.0 model.fit(train_images, train_labels, epochs=5, batch_size=64) test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) print("Test accuracy:", test_acc) ``` 这段代码中使用了两个卷积层分别提取32和64个特征,池化层进行特征加速和降维,全连接层作为最终分类器输出预测结果。在模型训练时,使用Adam优化器和交叉熵损失函数进行训练,经过5个epoch后可以得到约99%的测试准确率。 总之,通过使用TensorFlow实现MNIST手写数字识别的经历,可以深切认识到深度学习在计算机视觉领域中的应用,以及如何通过搭建和训练神经网络模型来解决实际问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值