IQVIA医药咨询随笔杂谈

艾昆纬IQVIA是由Quintiles(昆泰)和IMS Health于2016年10月合并的一家美国跨国公司,当时取名为QuintilesIMS。于2017年11月更名为IQVIA。主要服务于健康信息技术和临床研究综合行业,由商务咨询、药物研究于开发、综合服务三大版块构成。

其中医药咨询业务是许多投融资机构及药企所热衷的,一开始基本都会涉及咨询医药某领域市场规模、销售数据、竞争企业市场情况、未来市场预测等问题,而这些问题深层次的逻辑是源于数据的支撑,所以数据来源的准确与否直接反应其咨询的信息是否可靠,这也是咨询业务的根本

由于国外医药咨询早期占领市场形成的垄断局面导致现在一说到医药咨询都会联想到国外的一些数据服务商,但在国内本土市场领域下沉市场的数据调查是远不如国内医药数据服务商的,无论是药物研发数据还是市场数据信息调研都显得逊色一些。特别是IQVIA作为一家美国跨国公司,在采集药企数据需要合作等领域在文化属性、制度、商业习惯等层面多少有点水土不服。而近些年像药融云、insight、米内这样的国内医药数据服务商在医药数据深耕发力,努力做出比国外数据库更精细化的医药数据,更符合国内用户使用习惯的风格界面。

目前国内提到医药数据咨询业务都会想到药融云pharnexcloud ,它是国内医药数据中覆盖面最广的一个,也是各大药企最经常购买的版本。其专业提供医药数据库服务、医药行业深度咨询服务等

                                             图片来源:pharnexcloud-咨询服务 

药融云医药数据库:涵盖了生物医药的全生命周期数据,药物研发、药品销售、市场信息、仿制药、医疗器械、生产检验、合理用药、原料药、全球药品等九个版块数据。

覆盖范围:覆盖全球主流国家近80个,国内多地省市县级渠道。

数据源:涉及数千个数据来源,包含不限于(①医药情报:实验室研究、内部会议、专业报道、专利、商标、技术实施文件、学术会议、技术报告、科技期刊、文献等。②医药数据库:异构资源平台、基于云计算、云存储的医药大数据处理平台等。③医药官方数据:全球各国或地区机构、资讯、企业公告报道、医疗会议、新闻资讯、投资者压降,公司年度报告、医疗卫生机构官网、药企官网、医学杂志、其它官方资源等。)

     增值服务:①专人对接需求,团队解决问题。②沙龙、巡讲、峰会、项目交易、需求对接等活动支持,能加入他们药融圈生态链(目前国内医药领域最顶级生态链)。

下面我们将IQVIA在国内最拿得出手的数据(中国医院药品统计报告CHPA )与药融云pharnexcloud 的(全国医院销售数据)一个直观的对比

IQVIA数据库(中国医院药品统计报告) ,基于9454家医院总体(≥100张床位)进行样本设计,样本覆盖255个城市。样本医院只有1000家左右,能推算的总量约8000家。

IQVIA数据库全球医药交易信息由80000多条;

                                           图片来源:IQVIA-Qeury builder

pharnexcloud数据库(全国医院销售数据),本数据库是基于10000家医院(二级及以上医院)进行样本设计,覆盖全国24个省及所有重点城市地区并分层抽样2200多家,通过专业的计算模型分层放大,样本医院能推算9000多家。这是国内外其它数据库无法比拟的覆盖规模。

pharnexcloud数据库全球医药交易信息19,653(笔者权限不够,只能查到2021年至今的数据),由此可以推算pharnexcloud在全球医药交易信息数据也是高于IQVIA数据库的。

 

                                          图片来源:pharnexcloud-全国医院销售数据库 

                                          (由点到面:通过疾病查询各维度关联数据) 

在医药咨询方面的服务,特别是国内的医药咨询更推荐使用药融云pharnexcloud医药数据库,无论是数据情报、商业合作、归属价值都是国内外其它数据服务商所不能比拟的。

### 解决 PP-OCRv4 出现的错误 当遇到 `WARNING: The pretrained params backbone.blocks2.0.dw_conv.lab.scale not in model` 这样的警告时,这通常意味着预训练模型中的某些参数未能匹配到当前配置下的模型结构中[^2]。 对于此问题的一个有效解决方案是采用特定配置文件来适配预训练权重。具体操作方法如下: 通过指定配置文件 `ch_PP-OCRv4_det_student.yml` 并利用已有的最佳精度预训练模型 (`best_accuracy`) 来启动训练过程可以绕过上述不兼容的问题。执行命令如下所示: ```bash python3 tools/train.py -c configs/det/ch_PP-OCRv4/ch_PP-OCRv4_det_student.yml ``` 该方案不仅解决了参数缺失带来的警告,还能够继续基于高质量的预训练成果进行微调,从而提升最终检测效果。 关于蒸馏的概念,在机器学习领域内指的是将大型复杂网络(teacher 模型)的知识迁移到小型简单网络(student 模型)。这里 student 和 teacher 的关系是指两个不同规模或架构的神经网络之间的指导与被指导的关系;其中 teacher 已经经过充分训练并具有良好的性能,而 student 则试图模仿前者的行为模式以达到相似的效果但保持更高效的计算特性。 至于提到的 `Traceback` 错误信息部分,由于未提供具体的跟踪堆栈详情,难以给出针对性建议。不过一般而言,这报错往往涉及代码逻辑错误或是环境配置不当等问题。为了更好地帮助定位和解决问题,推荐记录完整的异常日志,并仔细检查最近修改过的代码片段以及确认依赖库版本的一致性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值