高数习题8.3

  1. 应用格林公式计算下列曲线积分:
    (1) ∮ L + ( x y 2 + y 3 ) d y − ( x 3 + x 2 y ) d x \oint_{L^+}(xy^2+y^3)dy-(x^3+x^2y)dx L+(xy2+y3)dy(x3+x2y)dx,其中L为圆周: x 2 + y 2 = a 2 x^2+y^2=a^2 x2+y2=a2;
    (2) ∮ L + y 2 d x + x 2 d y \oint_{L^+}y^2dx+x^2dy L+y2dx+x2dy,其中 L + L^+ L+为以 O ( 0 , 0 ) , B ( 1 , 0 ) , C ( 0 , 1 ) O(0,0),B(1,0),C(0,1) O(0,0),B(1,0),C(0,1)为顶点的三角形OBC的正向边界线;
    (3) ∮ L + x 2 + y 2 d x + y [ x y + l n ( x + x 2 + y 2 ) ] d y \oint_{L^+}\sqrt{x^2+y^2}dx+y[xy+ln(x+\sqrt{x^2+y^2})]dy L+x2+y2 dx+y[xy+ln(x+x2+y2 )]dy,其中L是以点 A ( 1 , 1 ) , B ( 2 , 2 ) , C ( 1 , 3 ) A(1,1),B(2,2),C(1,3) A(1,1),B(2,2),C(1,3)为顶点的三角形的正向边界线;
    (4) ∮ L + ( x + e x s i n y ) d x + ( x + e x c o s y ) d y \oint_{L^+}(x+e^xsiny)dx+(x+e^xcosy)dy L+(x+exsiny)dx+(x+excosy)dy,其中L是双纽线 r 2 = c o s 2 θ r^2=cos2\theta r2=cos2θ的右半支;
    (5) ∮ L + ( e x s i n y + s i n x − 8 y ) d x + ( e x c o s y − s i n y ) d y \oint_{L^+}(e^xsiny+sinx-8y)dx+(e^xcosy-siny)dy L+(exsiny+sinx8y)dx+(excosysiny)dy,其中L为上半圆 0 ≤ y ≤ a x − x 2 ( 0 ≤ x ≤ a ) 的 边 界 0\leq y\leq \sqrt{ax-x^2}(0\leq x\leq a)的边界 0yaxx2 (0xa).
    解:
    (1)
    ∮ L + ( x y 2 + y 3 ) d y − ( x 3 + x 2 y ) d x = ∬ S x 2 + y 2 d x d y = ∫ 0 2 π d θ ∫ 0 a r 2 r d r = 2 π a 4 4 = a 4 π 2 \begin{aligned} \oint_{L^+}(xy^2+y^3)dy-(x^3+x^2y)dx &= \iint_Sx^2+y^2dxdy \\ &= \int_0^{2\pi}d\theta \int_0^a r^2 r dr \\ &= 2\pi \frac{a^4}{4} \\ &= \frac{a^4\pi}{2} \\ \end{aligned} L+(xy2+y3)dy(x3+x2y)dx=Sx2+y2dxdy=02πdθ0ar2rdr=2π4a4=2a4π
    (2)
    ∮ L + y 2 d x + x 2 d y = ∬ S 2 x − 2 y d x d y = ∫ 0 1 d x ∫ 0 1 − x 2 x − 2 y d y = ∫ 0 1 ( − 3 x 2 + 4 x − 1 ) d x = 0 \begin{aligned} \oint_{L^+}y^2dx+x^2dy &= \iint_S2x-2ydxdy \\ &= \int_0^1dx \int_0^{1-x} 2x-2y dy \\ &= \int_0^1(-3x^2+4x-1)dx \\ &= 0 \\ \end{aligned} L+y2dx+x2dy=S2x2ydxdy=01dx01x2x2ydy=01(3x2+4x1)dx=0
    (3)
    ∮ L + x 2 + y 2 d x + y [ x y + l n ( x + x 2 + y 2 ) ] d y = ∬ S y 2 + y x 2 + y 2 − y x 2 + y 2 d x d y = ∬ S y 2 d x d y = ∫ 1 2 d x ∫ x 4 − x y 2 d y = ∫ 1 2 − 2 x 3 + 12 x 2 − 48 x + 64 3 d x = − x 4 2 + 4 x 3 − 24 x 2 + 64 x 3 ∣ 1 2 = 25 6 \begin{aligned} \oint_{L^+}\sqrt{x^2+y^2}dx+y[xy+ln(x+\sqrt{x^2+y^2})]dy &= \iint_Sy^2+\frac{y}{\sqrt{x^2+y^2}}-\frac{y}{\sqrt{x^2+y^2}}dxdy \\ &= \iint_Sy^2dxdy \\ &= \int_1^2dx \int_{x}^{4-x} y^2 dy \\ &= \int_1^2\frac{-2x^3+12x^2-48x+64}{3}dx \\ &= \left. \frac{-\frac{x^4}{2}+4x^3-24x^2+64x}{3}\right|_1^2\\ &= \frac{25}{6} \\ \end{aligned} L+x2+y2 dx+y[xy+ln(x+x2+y2 )]dy=Sy2+x2+y2 yx2+y2 ydxdy=Sy2dxdy=12dxx4xy2dy=1232x3+12x248x+64dx=32x4+4x324x2+64x12=625
    (4)
    画图:
    在这里插入图片描述
    ∮ L + ( x + e x s i n y ) d x + ( x + e x c o s y ) d y = ∬ S 1 + e x c o s y − e x c o s y d x d y = ∬ S d x d y = ∫ − π 4 π 4 d θ ∫ 0 c o s 2 θ r d r = ∫ − π 4 π 4 c o s 2 θ 2 d θ = s i n 2 θ 4 ∣ − π 4 π 4 = 1 2 \begin{aligned} \oint_{L^+}(x+e^xsiny)dx+(x+e^xcosy)dy &= \iint_S1+e^xcosy-e^xcosydxdy \\ &= \iint_Sdxdy \\ &= \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}d\theta \int_0^{\sqrt{cos2\theta}} r dr \\ &= \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\frac{cos2\theta}{2}d\theta \\ &= \left. \frac{sin2\theta}{4}\right|_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\\ &= \frac{1}{2} \\ \end{aligned} L+(x+exsiny)dx+(x+excosy)dy=S1+excosyexcosydxdy=Sdxdy=4π4πdθ0cos2θ rdr=4π4π2cos2θdθ=4sin2θ4π4π=21
    (5)
    ∮ L + ( e x s i n y + s i n x − 8 y ) d x + ( e x c o s y − s i n y ) d y = ∬ S e x c o s y − e x c o s y + 8 d x d y = 8 ∬ S d x d y = 8 ∫ 0 π 2 d θ ∫ 0 a c o s θ r d r = 4 ∫ 0 π 2 a 2 c o s 2 θ d θ = 4 a 2 s i n 2 θ + 2 θ 4 ∣ 0 π 2 = a 2 π \begin{aligned} \oint_{L^+}(e^xsiny+sinx-8y)dx+(e^xcosy-siny)dy &= \iint_Se^xcosy-e^xcosy+8dxdy \\ &= 8\iint_Sdxdy \\ &= 8\int_{0}^{\frac{\pi}{2}}d\theta \int_0^{acos\theta} r dr \\ &= 4\int_{0}^{\frac{\pi}{2}}a^2cos^2\theta d\theta \\ &= 4a^2\left. \frac{sin2\theta+2\theta}{4}\right|_{0}^{\frac{\pi}{2}} \\ &= a^2\pi \\ \end{aligned} L+(exsiny+sinx8y)dx+(excosysiny)dy=Sexcosyexcosy+8dxdy=8Sdxdy=802πdθ0acosθrdr=402πa2cos2θdθ=4a24sin2θ+2θ02π=a2π
  2. 利用曲线积分计算下列闭曲线所围图形的面积:
    (1) 星形线 x = a c o s 3 t , y = a s i n 3 t ( a > 0 , 0 ≤ t ≤ 2 π ) x=acos^3t,y=asin^3t(a>0,0\leq t\leq 2\pi) x=acos3t,y=asin3t(a>0,0t2π),
    (2) 心脏线 { x = a ( 1 − c o s t ) c o s t , y = a ( 1 − c o s t ) s i n t , 0 ≤ t ≤ 2 π . \begin{cases}x=a(1-cost)cost,\\ y=a(1-cost)sint,\end{cases}0\leq t\leq 2\pi. {x=a(1cost)cost,y=a(1cost)sint,0t2π.
    解:
    (1) 记星形线为L,则:
    ∬ S d x d y = ∮ L + x d y = ∫ 0 2 π a c o s 3 t ⋅ 3 a c o s t s i n 2 t d t = 3 a 2 8 ∫ 0 2 π s i n 2 2 t ( c o s 2 t + 1 ) d t = 3 a 2 8 ( s i n 3 2 t 3 + θ 2 − s i n 4 t 8 ) ∣ 0 2 π = 3 a 2 π 8 \begin{aligned} \iint_Sdxdy &= \oint_{L^+}xdy \\ &= \int_{0}^{2\pi} acos^3t\cdot 3acostsin^2tdt \\ &= \frac{3a^2}{8}\int_{0}^{2\pi} sin^22t(cos2t+1)dt \\ &= \frac{3a^2}{8}\left. (\frac{sin^32t}{3}+\frac{\theta}{2}-\frac{sin4t}{8})\right|_{0}^{2\pi} \\ &= \frac{3a^2\pi}{8} \\ \end{aligned} Sdxdy=L+xdy=02πacos3t3acostsin2tdt=83a202πsin22t(cos2t+1)dt=83a2(3sin32t+2θ8sin4t)02π=83a2π
    (2) 记心脏线为L,则:
    ∬ S d x d y = 1 2 ∮ L + x d y − y d x = 1 2 ∫ 0 2 π a ( 1 − c o s t ) c o s t ⋅ a [ s i n 2 t + ( a − c o s t ) c o s t ] − a ( 1 − c o s t ) s i n t ⋅ a [ s i n t c o s t − ( 1 − c o s t ) s i n t ] d t = a 2 2 ∫ 0 2 π c o s 2 t − 2 c o s t + 1 d t = a 2 2 ( 3 t 2 − 2 s i n t + s i n 2 t 4 ) ∣ 0 2 π = 3 a 2 π 2 \begin{aligned} \iint_Sdxdy &= \frac{1}{2}\oint_{L^+}xdy - ydx \\ &= \frac{1}{2}\int_{0}^{2\pi} a(1-cost)cost\cdot a[sin^2t+(a-cost)cost] - a(1-cost)sint \cdot a[sintcost-(1-cost)sint]dt \\ &= \frac{a^2}{2}\int_{0}^{2\pi} cos^2t-2cost+1dt \\ &= \frac{a^2}{2}\left. (\frac{3t}{2}-2sint+\frac{sin2t}{4})\right|_{0}^{2\pi} \\ &= \frac{3a^2\pi}{2} \\ \end{aligned} Sdxdy=21L+xdyydx=2102πa(1cost)costa[sin2t+(acost)cost]a(1cost)sinta[sintcost(1cost)sint]dt=2a202πcos2t2cost+1dt=2a2(23t2sint+4sin2t)02π=23a2π
  3. 证明 ∮ L + f ( x y ) ( y d x + x d y ) = 0 \oint_{L^+}f(xy)(ydx+xdy)=0 L+f(xy)(ydx+xdy)=0,其中 f ( u ) f(u) f(u)有连续的一阶导数,L为光滑曲线.
    证明: f ( x y ) ( y d x + x d y ) = f ( x y ) d ( x y ) f(xy)(ydx+xdy)=f(xy)d(xy) f(xy)(ydx+xdy)=f(xy)d(xy)为全微分,因此它的曲线积分与路径无关,由于L的起点与终点重合,所以 ∮ L + f ( x y ) ( y d x + x d y ) = 0 \oint_{L^+}f(xy)(ydx+xdy)=0 L+f(xy)(ydx+xdy)=0.
  4. 证明下列曲线积分与路径无关,并求积分值:
    (1) ∫ ( 0 , 0 ) ( 1 , 1 ) ( x + y ) d x + ( x − y ) d y \int_{(0,0)}^{(1,1)}(x+y)dx+(x-y)dy (0,0)(1,1)(x+y)dx+(xy)dy;
    (2) ∫ ( a 1 , b 1 ) ( a 2 , b 2 ) x y ( 1 + y ) d x + x 2 ( 1 2 + y ) d y \int_{(a_1,b_1)}^{(a_2,b_2)}xy(1+y)dx+x^2(\frac{1}{2}+y)dy (a1,b1)(a2,b2)xy(1+y)dx+x2(21+y)dy;
    (3) ∫ ( 0 , 0 ) ( a , b ) e x c o s y d x − e x s i n y d y \int_{(0,0)}^{(a,b)}e^xcosydx-e^xsinydy (0,0)(a,b)excosydxexsinydy.
    解:
    (1)
    因为 ∂ ( x − y ) ∂ x − ∂ ( x + y ) ∂ y = 0 \frac{\partial(x-y)}{\partial x}-\frac{\partial(x+y)}{\partial y}=0 x(xy)y(x+y)=0,所以该曲线积分与路径无关.
    u ( x , y ) = ∫ ( x + y ) d x + φ ( y ) = x 2 2 + x y + φ ( y ) φ ( y ) = ∫ ( x − y ) − ∂ ( x 2 2 + x y ) ∂ y d y = − y 2 2 + C u ( x , y ) = x 2 2 + x y − y 2 2 + C u(x,y)=\int (x+y)dx+\varphi(y)=\frac{x^2}{2}+xy+\varphi(y) \\ \varphi(y) = \int (x-y)-\frac{\partial (\frac{x^2}{2}+xy)}{\partial y}dy=-\frac{y^2}{2}+C \\ u(x,y)=\frac{x^2}{2}+xy-\frac{y^2}{2}+C u(x,y)=(x+y)dx+φ(y)=2x2+xy+φ(y)φ(y)=(xy)y(2x2+xy)dy=2y2+Cu(x,y)=2x2+xy2y2+C
    ∫ ( 0 , 0 ) ( 1 , 1 ) ( x + y ) d x + ( x − y ) d y = ∫ ( 0 , 0 ) ( 1 , 1 ) d ( x 2 2 + x y − y 2 2 ) = 1 \begin{aligned} \int_{(0,0)}^{(1,1)}(x+y)dx+(x-y)dy &= \int_{(0,0)}^{(1,1)}d(\frac{x^2}{2}+xy-\frac{y^2}{2}) \\ &=1 \\ \end{aligned} (0,0)(1,1)(x+y)dx+(xy)dy=(0,0)(1,1)d(2x2+xy2y2)=1
    (2)
    因为 ∂ ( x 2 ( 1 2 + y ) ) ∂ x − ∂ ( x y ( 1 + y ) ) ∂ y = x + 2 x y − ( x + 2 x y ) = 0 \frac{\partial(x^2(\frac{1}{2}+y))}{\partial x}-\frac{\partial(xy(1+y))}{\partial y}=x+2xy-(x+2xy)=0 x(x2(21+y))y(xy(1+y))=x+2xy(x+2xy)=0,所以该曲线积分与路径无关.
    u ( x , y ) = ∫ x y ( 1 + y ) d x + φ ( y ) = x 2 y ( 1 + y ) 2 + φ ( y ) φ ( y ) = ∫ x 2 ( 1 2 + y ) − ∂ ( x 2 y ( 1 + y ) 2 ) ∂ y d y = C u ( x , y ) = x 2 y + x 2 y 2 2 + C u(x,y)=\int xy(1+y)dx+\varphi(y)=\frac{x^2y(1+y)}{2}+\varphi(y) \\ \varphi(y) = \int x^2(\frac{1}{2}+y) - \frac{\partial (\frac{x^2y(1+y)}{2})}{\partial y}dy=C \\ u(x,y)=\frac{x^2y+x^2y^2}{2}+C u(x,y)=xy(1+y)dx+φ(y)=2x2y(1+y)+φ(y)φ(y)=x2(21+y)y(2x2y(1+y))dy=Cu(x,y)=2x2y+x2y2+C
    ∫ ( a 1 , b 1 ) ( a 2 , b 2 ) x y ( 1 + y ) d x + x 2 ( 1 2 + y ) d y = ∫ ( a 1 , b 1 ) ( a 2 , b 2 ) d ( x 2 y + x 2 y 2 2 ) = a 2 2 b 2 + a 2 2 b 2 2 − ( a 1 2 b 1 + a 1 2 b 1 2 ) 2 \begin{aligned} \int_{(a_1,b_1)}^{(a_2,b_2)}xy(1+y)dx+x^2(\frac{1}{2}+y)dy &= \int_{(a_1,b_1)}^{(a_2,b_2)}d(\frac{x^2y+x^2y^2}{2}) \\ &= \frac{a_2^2b_2+a_2^2b_2^2-(a_1^2b_1+a_1^2b_1^2)}{2}\\ \end{aligned} (a1,b1)(a2,b2)xy(1+y)dx+x2(21+y)dy=(a1,b1)(a2,b2)d(2x2y+x2y2)=2a22b2+a22b22(a12b1+a12b12)
    (3)
    因为 ∂ ( − e x s i n y ) ) ∂ x − ∂ ( e x c o s y ) ∂ y = − e x s i n y + e x s i n y = 0 \frac{\partial(-e^xsiny))}{\partial x}-\frac{\partial(e^xcosy)}{\partial y}=-e^xsiny+e^xsiny=0 x(exsiny))y(excosy)=exsiny+exsiny=0,所以该曲线积分与路径无关.
    u ( x , y ) = ∫ e x c o s y d x + φ ( y ) = e x c o s y + φ ( y ) φ ( y ) = ∫ − e x s i n y − ∂ ( e x c o s y ) ∂ y d y = C u ( x , y ) = e x c o s y + C u(x,y)=\int e^xcosydx+\varphi(y)=e^xcosy+\varphi(y) \\ \varphi(y) = \int -e^xsiny - \frac{\partial (e^xcosy)}{\partial y}dy=C \\ u(x,y)=e^xcosy+C u(x,y)=excosydx+φ(y)=excosy+φ(y)φ(y)=exsinyy(excosy)dy=Cu(x,y)=excosy+C
    ∫ ( 0 , 0 ) ( a , b ) e x c o s y d x − e x s i n y d y = ∫ ( 0 , 0 ) ( a , b ) d ( e x c o s y ) = e a c o s b − 1 \begin{aligned} \int_{(0,0)}^{(a,b)}e^xcosydx-e^xsinydy &= \int_{(0,0)}^{(a,b)}d(e^xcosy) \\ &= e^acosb-1\\ \end{aligned} (0,0)(a,b)excosydxexsinydy=(0,0)(a,b)d(excosy)=eacosb1
  5. ∫ A B ⏠ ( x 4 + 4 x y 3 ) d x + ( 6 x 2 y 2 − 5 y 4 ) d y \int_{\overgroup{AB}}(x^4+4xy^3)dx+(6x^2y^2-5y^4)dy AB (x4+4xy3)dx+(6x2y25y4)dy的值,其中 A ( − 2 , − 1 ) , B ( 3 , 0 ) , A B ⏠ A(-2,-1),B(3,0),\overgroup{AB} A(2,1),B(3,0),AB 为任意的路径.
    解:
    因为 ∂ ( 6 x 2 y 2 − 5 y 4 ) ∂ x − ∂ ( x 4 + 4 x y 3 ) ∂ y = 12 x y 2 − 12 x y 2 = 0 \frac{\partial(6x^2y^2-5y^4)}{\partial x}-\frac{\partial(x^4+4xy^3)}{\partial y}=12xy^2-12xy^2=0 x(6x2y25y4)y(x4+4xy3)=12xy212xy2=0,所以该曲线积分与路径无关.
    u ( x , y ) = ∫ x 4 + 4 x y 3 d x + φ ( y ) = x 5 5 + 2 x 2 y 3 + φ ( y ) φ ( y ) = ∫ 6 x 2 y 2 − 5 y 4 − ∂ ( x 5 5 + 2 x 2 y 3 ) ∂ y d y = − y 5 + C u ( x , y ) = x 5 5 + 2 x 2 y 3 − y 5 + C u(x,y)=\int x^4+4xy^3dx+\varphi(y)=\frac{x^5}{5}+2x^2y^3+\varphi(y) \\ \varphi(y) = \int 6x^2y^2-5y^4 - \frac{\partial (\frac{x^5}{5}+2x^2y^3)}{\partial y}dy=-y^5+C \\ u(x,y)=\frac{x^5}{5}+2x^2y^3-y^5+C u(x,y)=x4+4xy3dx+φ(y)=5x5+2x2y3+φ(y)φ(y)=6x2y25y4y(5x5+2x2y3)dy=y5+Cu(x,y)=5x5+2x2y3y5+C
    ∫ A B ⏠ ( x 4 + 4 x y 3 ) d x + ( 6 x 2 y 2 − 5 y 4 ) d y = ∫ ( − 2 , − 1 ) ( 3 , 0 ) d ( x 5 5 + 2 x 2 y 3 − y 5 ) = 62 \begin{aligned} \int_{\overgroup{AB}}(x^4+4xy^3)dx+(6x^2y^2-5y^4)dy &= \int_{(-2,-1)}^{(3,0)}d(\frac{x^5}{5}+2x^2y^3-y^5) \\ &= 62 \\ \end{aligned} AB (x4+4xy3)dx+(6x2y25y4)dy=(2,1)(3,0)d(5x5+2x2y3y5)=62
  6. 求满足下列等式的函数 u ( x , y ) u(x,y) u(x,y)
    (1) d u = ( x 2 + 2 x y − y 2 ) d x + ( x 2 − 2 x y − y 2 ) d y ; du=(x^2+2xy-y^2)dx+(x^2-2xy-y^2)dy; du=(x2+2xyy2)dx+(x22xyy2)dy;
    (2) d u = ( 2 x c o s y − y 2 s i n x ) d x + ( 2 y c o s x − x 2 s i n y ) d y . du=(2xcosy-y^2sinx)dx+(2ycosx-x^2siny)dy. du=(2xcosyy2sinx)dx+(2ycosxx2siny)dy.
    解:
    (1)
    u ( x , y ) = ∫ ( x 2 + 2 x y − y 2 ) d x + φ ( y ) = x 3 3 + x 2 y − x y 2 + φ ( y ) φ ( y ) = ∫ ( x 2 − 2 x y − y 2 ) − ∂ ( x 3 3 + x 2 y − x y 2 ) ∂ y d y = − y 3 3 + C u ( x , y ) = x 3 3 + x 2 y − x y 2 − y 3 3 + C u(x,y)=\int (x^2+2xy-y^2)dx+\varphi(y)=\frac{x^3}{3}+x^2y-xy^2+\varphi(y) \\ \varphi(y) = \int (x^2-2xy-y^2) - \frac{\partial(\frac{x^3}{3}+x^2y-xy^2)}{\partial y}dy=-\frac{y^3}{3}+C \\ u(x,y)=\frac{x^3}{3}+x^2y-xy^2-\frac{y^3}{3}+C u(x,y)=(x2+2xyy2)dx+φ(y)=3x3+x2yxy2+φ(y)φ(y)=(x22xyy2)y(3x3+x2yxy2)dy=3y3+Cu(x,y)=3x3+x2yxy23y3+C
    (2)
    u ( x , y ) = ∫ ( 2 x c o s y − y 2 s i n x ) d x + φ ( y ) = x 2 c o s y + y 2 c o s x + φ ( y ) φ ( y ) = ∫ ( 2 y c o s x − x 2 s i n y ) − ∂ ( x 2 c o s y + y 2 c o s x ) ∂ y d y = C u ( x , y ) = x 2 c o s y + y 2 c o s x + C u(x,y)=\int (2xcosy-y^2sinx)dx+\varphi(y)=x^2cosy+y^2cosx+\varphi(y) \\ \varphi(y) = \int (2ycosx-x^2siny) - \frac{\partial(x^2cosy+y^2cosx)}{\partial y}dy=C \\ u(x,y)=x^2cosy+y^2cosx+C u(x,y)=(2xcosyy2sinx)dx+φ(y)=x2cosy+y2cosx+φ(y)φ(y)=(2ycosxx2siny)y(x2cosy+y2cosx)dy=Cu(x,y)=x2cosy+y2cosx+C
  7. 求常数a,b,使 ( y 2 + 2 x y + a x 2 ) d x − ( x 2 + 2 x y + b y 2 ) d y ( x 2 + y 2 ) 2 \frac{(y^2+2xy+ax^2)dx-(x^2+2xy+by^2)dy}{(x^2+y^2)^2} (x2+y2)2(y2+2xy+ax2)dx(x2+2xy+by2)dy是某个函数 u ( x , y ) u(x,y) u(x,y)的全微分,并求 u ( x , y ) u(x,y) u(x,y).
    解:
    ∂ ( − x 2 + 2 x y + b y 2 ( x 2 + y 2 ) 2 ) ∂ x − ∂ ( y 2 + 2 x y + a x 2 ( x 2 + y 2 ) 2 ) ∂ y = 0 ( 2 x + 2 y ) ( x 2 + y 2 ) 2 − 4 x ( x 2 + y 2 ) ( x 2 + 2 x y + b y 2 ) ( x 2 + y 2 ) 4 + ( 2 x + 2 y ) ( x 2 + y 2 ) 2 − 4 y ( x 2 + y 2 ) ( y 2 + 2 x y + a x 2 ) ( x 2 + y 2 ) 4 = 0 ( 1 + a ) x 2 y + ( 1 + b ) x y 2 = 0 \begin{aligned} \frac{\partial(-\frac{x^2+2xy+by^2}{(x^2+y^2)^2})}{\partial x}-\frac{\partial(\frac{y^2+2xy+ax^2}{(x^2+y^2)^2})}{\partial y}&=0 \\ \frac{(2x+2y)(x^2+y^2)^2-4x(x^2+y^2)(x^2+2xy+by^2)}{(x^2+y^2)^4}+\frac{(2x+2y)(x^2+y^2)^2-4y(x^2+y^2)(y^2+2xy+ax^2)}{(x^2+y^2)^4}&=0 \\ (1+a)x^2y+(1+b)xy^2&=0 \\ \end{aligned} x((x2+y2)2x2+2xy+by2)y((x2+y2)2y2+2xy+ax2)(x2+y2)4(2x+2y)(x2+y2)24x(x2+y2)(x2+2xy+by2)+(x2+y2)4(2x+2y)(x2+y2)24y(x2+y2)(y2+2xy+ax2)(1+a)x2y+(1+b)xy2=0=0=0
    所以: a = − 1 , b = − 1 a=-1,b=-1 a=1,b=1,原积分为 ( y 2 + 2 x y − x 2 ) d x − ( x 2 + 2 x y − y 2 ) d y ( x 2 + y 2 ) 2 \frac{(y^2+2xy-x^2)dx-(x^2+2xy-y^2)dy}{(x^2+y^2)^2} (x2+y2)2(y2+2xyx2)dx(x2+2xyy2)dy.
    u ( x , y ) = ∫ y 2 + 2 x y − x 2 ( x 2 + y 2 ) 2 d x + φ ( y ) = x − y x 2 + y 2 + φ ( y ) φ ( y ) = ∫ − x 2 + 2 x y − y 2 ( x 2 + y 2 ) 2 − ∂ x − y x 2 + y 2 ∂ y d y = C u ( x , y ) = x − y x 2 + y 2 + C u(x,y)=\int \frac{y^2+2xy-x^2}{(x^2+y^2)^2}dx+\varphi(y)=\frac{x-y}{x^2+y^2}+\varphi(y) \\ \varphi(y) = \int -\frac{x^2+2xy-y^2}{(x^2+y^2)^2}-\frac{\partial \frac{x-y}{x^2+y^2}}{\partial y}dy=C \\ u(x,y)=\frac{x-y}{x^2+y^2}+C u(x,y)=(x2+y2)2y2+2xyx2dx+φ(y)=x2+y2xy+φ(y)φ(y)=(x2+y2)2x2+2xyy2yx2+y2xydy=Cu(x,y)=x2+y2xy+C
  8. ∫ ( 0 , 1 ) ( 1 , 1 ) ( x x 2 + y 2 + y ) d x + ( y x 2 + y 2 + x ) d y \int_{(0,1)}^{(1,1)}(\frac{x}{\sqrt{x^2+y^2}}+y)dx+(\frac{y}{\sqrt{x^2+y^2}}+x)dy (0,1)(1,1)(x2+y2 x+y)dx+(x2+y2 y+x)dy.
    解:因为 ∂ ( y x 2 + y 2 + x ) ∂ x − ∂ ( x x 2 + y 2 + y ) ∂ y = − x y ( x 2 + y 2 ) − 2 3 + x y ( x 2 + y 2 ) − 2 3 = 0 \frac{\partial(\frac{y}{\sqrt{x^2+y^2}}+x)}{\partial x}-\frac{\partial(\frac{x}{\sqrt{x^2+y^2}}+y)}{\partial y}=-xy(x^2+y^2)^{-\frac{2}{3}}+xy(x^2+y^2)^{-\frac{2}{3}}=0 x(x2+y2 y+x)y(x2+y2 x+y)=xy(x2+y2)32+xy(x2+y2)32=0,所以该曲线积分与路径无关.
    u ( x , y ) = ∫ ( x x 2 + y 2 + y ) d x + φ ( y ) = x 2 + y 2 + x y + φ ( y ) φ ( y ) = ∫ ( y x 2 + y 2 + x ) − ∂ ( x 2 + y 2 + x y ) ∂ y d y = C u ( x , y ) = x 2 + y 2 + x y + C u(x,y)=\int (\frac{x}{\sqrt{x^2+y^2}}+y)dx+\varphi(y)=\sqrt{x^2+y^2}+xy+\varphi(y) \\ \varphi(y) = \int (\frac{y}{\sqrt{x^2+y^2}}+x) - \frac{\partial (\sqrt{x^2+y^2}+xy)}{\partial y}dy=C \\ u(x,y)=\sqrt{x^2+y^2}+xy+C u(x,y)=(x2+y2 x+y)dx+φ(y)=x2+y2 +xy+φ(y)φ(y)=(x2+y2 y+x)y(x2+y2 +xy)dy=Cu(x,y)=x2+y2 +xy+C
    ∫ ( 0 , 1 ) ( 1 , 1 ) ( x x 2 + y 2 + y ) d x + ( y x 2 + y 2 + x ) d y = ∫ ( 0 , 1 ) ( 1 , 1 ) d ( x 2 + y 2 + x y ) = 2 \begin{aligned} \int_{(0,1)}^{(1,1)}(\frac{x}{\sqrt{x^2+y^2}}+y)dx+(\frac{y}{\sqrt{x^2+y^2}}+x)dy &= \int_{(0,1)}^{(1,1)}d(\sqrt{x^2+y^2}+xy) \\ &= \sqrt{2} \\ \end{aligned} (0,1)(1,1)(x2+y2 x+y)dx+(x2+y2 y+x)dy=(0,1)(1,1)d(x2+y2 +xy)=2
  9. ∫ A B ⏠ ( x 2 + y ) d x + ( x − y 2 ) d y \int_{\overgroup{AB}}(x^2+y)dx+(x-y^2)dy AB (x2+y)dx+(xy2)dy,其中 A B ⏠ \overgroup{AB} AB 是由 A ( 0 , 0 ) A(0,0) A(0,0) B ( 1 , 1 ) B(1,1) B(1,1)的曲线段 y 3 = x 2 y^3=x^2 y3=x2.
    解:因为 ∂ ( x − y 2 ) ∂ x − ∂ ( x 2 + y ) ∂ y = 0 \frac{\partial(x-y^2)}{\partial x}-\frac{\partial(x^2+y)}{\partial y}=0 x(xy2)y(x2+y)=0,所以该曲线积分与路径无关.
    u ( x , y ) = ∫ x 2 + y d x + φ ( y ) = x 3 3 + x y + φ ( y ) φ ( y ) = ∫ x − y 2 − ∂ ( x 3 3 + x y ) ∂ y d y = − y 3 3 + C u ( x , y ) = x 3 3 + x y − y 3 3 + C u(x,y)=\int x^2+ydx+\varphi(y)=\frac{x^3}{3}+xy+\varphi(y) \\ \varphi(y) = \int x-y^2 - \frac{\partial (\frac{x^3}{3}+xy)}{\partial y}dy=-\frac{y^3}{3}+C \\ u(x,y)=\frac{x^3}{3}+xy-\frac{y^3}{3}+C u(x,y)=x2+ydx+φ(y)=3x3+xy+φ(y)φ(y)=xy2y(3x3+xy)dy=3y3+Cu(x,y)=3x3+xy3y3+C
    ∫ A B ⏠ ( x 2 + y ) d x + ( x − y 2 ) d y = ∫ ( 0 , 0 ) ( 1 , 1 ) d ( x 3 3 + x y − y 3 3 ) = 1 \begin{aligned} \int_{\overgroup{AB}}(x^2+y)dx+(x-y^2)dy &= \int_{(0,0)}^{(1,1)}d(\frac{x^3}{3}+xy-\frac{y^3}{3}) \\ &= 1 \\ \end{aligned} AB (x2+y)dx+(xy2)dy=(0,0)(1,1)d(3x3+xy3y3)=1
  10. 设D是平面有界闭区域,其边界线逐段光滑,函数 P ( x , y ) , Q ( x , y ) P(x,y),Q(x,y) P(x,y),Q(x,y)在D上有连续的一阶偏导数.证明: ∮ L + [ P c o s ( n , x ) + Q c o s ( n , x ) ] d s = ∬ D ( ∂ P ∂ x + ∂ Q ∂ y ) d σ \oint_{L_+}[Pcos(n,x)+Qcos(n,x)]ds=\iint_D(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y})d\sigma L+[Pcos(n,x)+Qcos(n,x)]ds=D(xP+yQ)dσ,其中 c o s ( n , x ) , c o s ( n , y ) cos(n,x),cos(n,y) cos(n,x),cos(n,y)为曲线L的外法向量的方向余弦.
    证明: ∮ L + [ P c o s ( n , x ) + Q c o s ( n , x ) ] d s = ∮ L + P d y − Q d x = ∬ D ( ∂ P ∂ x + ∂ Q ∂ y ) d σ \oint_{L_+}[Pcos(n,x)+Qcos(n,x)]ds=\oint_{L_+}Pdy-Qdx=\iint_D(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y})d\sigma L+[Pcos(n,x)+Qcos(n,x)]ds=L+PdyQdx=D(xP+yQ)dσ
  11. 求曲线积分 ∮ L + [ x c o s < n , i > + y c o s < n , j > ] d s \oint_{L^+}[xcos<{\bf{n,i}}>+ycos<{\bf{n,j}}>]ds L+[xcos<n,i>+ycos<n,j>]ds其中L为一封闭曲线, n \bf{n} n为L的外法线方向的单位向量.
    解:设L所围区域为D,则 ∮ L + [ x c o s < n , i > + y c o s < n , j > ] d s = ∮ L + x d y − y d x = ∬ D 2 d σ = 两 倍 D 的 面 积 \oint_{L^+}[xcos<{\bf{n,i}}>+ycos<{\bf{n,j}}>]ds=\oint_{L^+}xdy-ydx=\iint_D2d\sigma=两倍D的面积 L+[xcos<n,i>+ycos<n,j>]ds=L+xdyydx=D2dσ=D
  12. 设函数 u ( x , y ) , v ( x , y ) u(x,y),v(x,y) u(x,y),v(x,y)在有界闭区域D上有连续的二阶偏导数,L为D的边界,分段光滑.证明:
    (1) ∬ D v Δ u d σ = ∮ L + v ∂ u ∂ n d s − ∬ D ( ∂ u ∂ x ⋅ ∂ v ∂ x + ∂ u ∂ y ⋅ ∂ v ∂ y ) d σ \iint_Dv\Delta ud\sigma=\oint_{L^+}v\frac{\partial u}{\partial \bf{n}}ds-\iint_D(\frac{\partial u}{\partial x}\cdot\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\cdot\frac{\partial v}{\partial y})d\sigma DvΔudσ=L+vnudsD(xuxv+yuyv)dσ,其中 ∂ u ∂ n \frac{\partial u}{\partial \bf{n}} nu为u沿L的外法线方向的方向导数;
    (2) ∬ D ( u Δ v − v Δ u ) d σ = ∮ L + ( u ∂ v ∂ n − v ∂ u ∂ n ) d s . \iint_D(u\Delta v-v\Delta u)d\sigma=\oint_{L^+}(u\frac{\partial v}{\partial \bf{n}}-v\frac{\partial u}{\partial \bf{n}})ds. D(uΔvvΔu)dσ=L+(unvvnu)ds.
    证明:
    (1)
    ∬ D v Δ u d σ + ∬ D ( ∂ u ∂ x ⋅ ∂ v ∂ x + ∂ u ∂ y ⋅ ∂ v ∂ y ) d σ = ∬ D ( v ∂ 2 u ∂ x 2 + v ∂ 2 u ∂ y 2 + ∂ u ∂ x ⋅ ∂ v ∂ x + ∂ u ∂ y ⋅ ∂ v ∂ y ) d σ = ∬ D ( ∂ ∂ x ( v ∂ u ∂ x ) + ∂ ∂ y ( v ∂ u ∂ y ) ) d σ = ∮ L + v ∂ u ∂ x d y − v ∂ u ∂ y d x = ∮ L + v ∂ u ∂ n d s \begin{aligned} \iint_Dv\Delta ud\sigma+\iint_D(\frac{\partial u}{\partial x}\cdot\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\cdot\frac{\partial v}{\partial y})d\sigma &= \iint_D(v\frac{\partial^2 u}{\partial x^2}+v\frac{\partial^2 u}{\partial y^2}+\frac{\partial u}{\partial x}\cdot\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\cdot\frac{\partial v}{\partial y})d\sigma \\ &= \iint_D(\frac{\partial}{\partial x}(v\frac{\partial u}{\partial x})+\frac{\partial}{\partial y}(v\frac{\partial u}{\partial y}))d\sigma \\ &= \oint_{L^+}v\frac{\partial u}{\partial x}dy-v\frac{\partial u}{\partial y}dx \\ &= \oint_{L^+}v\frac{\partial u}{\partial \bf{n}}ds \\ \end{aligned} DvΔudσ+D(xuxv+yuyv)dσ=D(vx22u+vy22u+xuxv+yuyv)dσ=D(x(vxu)+y(vyu))dσ=L+vxudyvyudx=L+vnuds
    得证.
    (2) 由(1)得:
    ∬ D ( u Δ v − v Δ u ) d σ = [ ∬ D u Δ v d σ + ∬ D ( ∂ u ∂ x ⋅ ∂ v ∂ x + ∂ u ∂ y ⋅ ∂ v ∂ y ) d σ ] − [ ∬ D u Δ v d σ + ∬ D ( ∂ u ∂ x ⋅ ∂ v ∂ x + ∂ u ∂ y ⋅ ∂ v ∂ y ) d σ ] = ∮ L + u ∂ v ∂ n d s − ∮ L + v ∂ u ∂ n d s = ∮ L + ( u ∂ v ∂ n − v ∂ u ∂ n ) d s \begin{aligned} \iint_D(u\Delta v-v\Delta u)d\sigma &= [\iint_Du\Delta vd\sigma+\iint_D(\frac{\partial u}{\partial x}\cdot\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\cdot\frac{\partial v}{\partial y})d\sigma]-[\iint_Du\Delta vd\sigma+\iint_D(\frac{\partial u}{\partial x}\cdot\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\cdot\frac{\partial v}{\partial y})d\sigma]\\ &= \oint_{L^+}u\frac{\partial v}{\partial \bf{n}}ds - \oint_{L^+}v\frac{\partial u}{\partial \bf{n}}ds\\ &= \oint_{L^+}(u\frac{\partial v}{\partial \bf{n}}-v\frac{\partial u}{\partial \bf{n}})ds \\ \end{aligned} D(uΔvvΔu)dσ=[DuΔvdσ+D(xuxv+yuyv)dσ][DuΔvdσ+D(xuxv+yuyv)dσ]=L+unvdsL+vnuds=L+(unvvnu)ds
    得证.
  13. u ( x , y ) u(x,y) u(x,y)是有界闭区域D上的调和函数,即 u ( x , y ) u(x,y) u(x,y)有连续的二阶偏导数,且满足 ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = 0. \frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0. x22u+y22u=0.证明:
    (1) ∮ L + u ∂ u ∂ n d s = ∬ D [ ( ∂ u ∂ x ) 2 + ( ∂ u ∂ y ) 2 ] d σ \oint_{L^+}u\frac{\partial u}{\partial \bf{n}}ds=\iint_D[(\frac{\partial u}{\partial x})^2+(\frac{\partial u}{\partial y})^2]d\sigma L+unuds=D[(xu)2+(yu)2]dσ,其中L为D的边界, n \bf{n} n为L的外法线方向;
    (2) 若 u ( x , y ) u(x,y) u(x,y)在L上处处为零,则 u ( x , y ) u(x,y) u(x,y)在D上也恒为零.
    证明:
    (1)
    ∮ L + u ∂ u ∂ n d s = ∮ L + u ∂ u ∂ x d y − u ∂ u ∂ y d x = ∬ D ( ∂ ∂ x ( u ∂ u ∂ x ) + ∂ ∂ y ( u ∂ u ∂ y ) ) d σ = ∬ D ( u ∂ 2 u ∂ x 2 + u ∂ 2 u ∂ y 2 + ∂ u ∂ x ⋅ ∂ u ∂ x + ∂ u ∂ y ⋅ ∂ u ∂ y ) d σ = ∬ D [ ( ∂ u ∂ x ) 2 + ( ∂ u ∂ y ) 2 ] d σ \begin{aligned} \oint_{L^+}u\frac{\partial u}{\partial \bf{n}}ds &= \oint_{L^+}u\frac{\partial u}{\partial x}dy-u\frac{\partial u}{\partial y}dx \\ &= \iint_D(\frac{\partial}{\partial x}(u\frac{\partial u}{\partial x})+\frac{\partial}{\partial y}(u\frac{\partial u}{\partial y}))d\sigma \\ &= \iint_D(u\frac{\partial^2 u}{\partial x^2}+u\frac{\partial^2 u}{\partial y^2}+\frac{\partial u}{\partial x}\cdot\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}\cdot\frac{\partial u}{\partial y})d\sigma \\ &= \iint_D[(\frac{\partial u}{\partial x})^2+(\frac{\partial u}{\partial y})^2]d\sigma \\ \end{aligned} L+unuds=L+uxudyuyudx=D(x(uxu)+y(uyu))dσ=D(ux22u+uy22u+xuxu+yuyu)dσ=D[(xu)2+(yu)2]dσ
    得证.
    (2) 由(1)得出 ∬ D [ ( ∂ u ∂ x ) 2 + ( ∂ u ∂ y ) 2 ] d σ = 0 \iint_D[(\frac{\partial u}{\partial x})^2+(\frac{\partial u}{\partial y})^2]d\sigma=0 D[(xu)2+(yu)2]dσ=0而且 ( ∂ u ∂ x ) 2 + ( ∂ u ∂ y ) 2 (\frac{\partial u}{\partial x})^2+(\frac{\partial u}{\partial y})^2 (xu)2+(yu)2在D上为非负连续函数,所以 ∂ u ∂ x , ∂ u ∂ y \frac{\partial u}{\partial x},\frac{\partial u}{\partial y} xu,yu在D上恒为0,所以 u ( x , y ) u(x,y) u(x,y)在D上恒为零.
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值