- 判别下列广义积分的敛散性;若收敛,求出其值:
(1) ∫ 0 + ∞ x e − x d x ; \int_0^{+\infty}xe^{-x}dx; ∫0+∞xe−xdx;
(2) ∫ 0 + ∞ d x ( x + 1 ) ( x + 2 ) ; \int_0^{+\infty}\frac{dx}{(x+1)(x+2)}; ∫0+∞(x+1)(x+2)dx;
(3) 1 σ 2 π ∫ − ∞ + ∞ e − ( x − a ) 2 2 σ 2 d x ( σ > 0 ) ; \frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{+\infty}e^{-\frac{(x-a)^2}{2\sigma^2}}dx(\sigma>0); σ2π1∫−∞+∞e−2σ2(x−a)2dx(σ>0);
(4) ∫ 0 + ∞ 1 + x 2 1 + x 4 d x ; \int_0^{+\infty}\frac{1+x^2}{1+x^4}dx; ∫0+∞1+x41+x2dx;
(5) ∫ 0 + ∞ x s i n x d x ; \int_0^{+\infty}xsinxdx; ∫0+∞xsinxdx;
(6) ∫ 4 + ∞ d x x x − 1 ; \int_4^{+\infty}\frac{dx}{x\sqrt{x-1}}; ∫4+∞xx−1dx;
(7) ∫ 0 + ∞ a r c t a n x ( 1 + x 2 ) 3 2 d x ; \int_0^{+\infty}\frac{arctanx}{(1+x^2)^{\frac{3}{2}}}dx; ∫0+∞(1+x2)23arctanxdx;
(8) ∫ − ∞ + ∞ d x x 2 + 2 x + 2 ; \int_{-\infty}^{+\infty}\frac{dx}{x^2+2x+2}; ∫−∞+∞x2+2x+2dx;
(9) ∫ 0 + ∞ e − x c o s x d x ; \int_0^{+\infty}e^{-x}cosxdx; ∫0+∞e−xcosxdx;
(10) ∫ − 1 1 d x 1 − x 2 ; \int_{-1}^1\frac{dx}{\sqrt{1-x^2}}; ∫−111−x2dx;
(11) ∫ 0 1 2 d x x l n x ; \int_0^{\frac{1}{2}}\frac{dx}{xlnx}; ∫021xlnxdx;
(12) ∫ 0 1 2 d x x l n 2 x ; \int_0^{\frac{1}{2}}\frac{dx}{xln^2x}; ∫021xln2xdx;
(13) ∫ 0 + ∞ d x 1 + x 4 . \int_0^{+\infty}\frac{dx}{1+x^4}. ∫0+∞1+x4dx.
解:
(1)
∫ 0 + ∞ x e − x d x = lim A → + ∞ ∫ 0 A x e − x d x = lim A → + ∞ ( − A e − A − e − A + 1 ) = 1 \begin{aligned} \int_0^{+\infty}xe^{-x}dx&=\lim_{A\to+\infty}\int_0^Axe^{-x}dx\\ &=\lim_{A\to+\infty}(-Ae^{-A}-e^{-A}+1)\\ &=1 \end{aligned} ∫0+∞xe−xdx=A→+∞lim∫0Axe−xdx=A→+∞lim(−Ae−A−e−A+1)=1
所以 ∫ 0 + ∞ x e − x d x \int_0^{+\infty}xe^{-x}dx ∫0+∞xe−xdx收敛于1
(2)
∫ 0 + ∞ d x ( x + 1 ) ( x + 2 ) = lim A → + ∞ ∫ 0 A d x ( x + 1 ) ( x + 2 ) = lim A → + ∞ [ l n ( A + 1 ) − l n ( A + 2 ) + l n 2 ] = l n 2 \begin{aligned} \int_0^{+\infty}\frac{dx}{(x+1)(x+2)}&=\lim_{A\to+\infty}\int_0^A\frac{dx}{(x+1)(x+2)}\\ &=\lim_{A\to+\infty}[ln(A+1)-ln(A+2)+ln2]\\ &=ln2 \end{aligned} ∫0+∞(x+1)(x+2)dx=A→+∞lim∫0A(x+1)(x+2)dx=A→+∞lim[ln(A+1)−ln(A+2)+ln2]=ln2
所以 ∫ 0 + ∞ d x ( x + 1 ) ( x + 2 ) \int_0^{+\infty}\frac{dx}{(x+1)(x+2)} ∫0+∞(x+1)(x+2)dx收敛于ln2
(3)
1 σ 2 π ∫ − ∞ + ∞ e − ( x − a ) 2 2 σ 2 d x = 1 π ∫ − ∞ + ∞ e − ( x − a 2 σ ) 2 d ( x − a σ 2 ) = 1 π ⋅ π 2 ⋅ 2 = 1 \begin{aligned} \frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{+\infty}e^{-\frac{(x-a)^2}{2\sigma^2}}dx&=\frac{1}{\sqrt{\pi}}\int_{-\infty}^{+\infty}e^{-(\frac{x-a}{\sqrt{2}\sigma})^2}d(\frac{x-a}{\sigma\sqrt{2}})\\ &=\frac{1}{\sqrt{\pi}}\cdot\frac{\sqrt{\pi}}{2}\cdot2\\ &=1 \end{aligned} σ2π1∫−∞+∞e−2σ2(x−a)2dx=π1∫−∞+∞e−(2σx−a)2d(σ2x−a)=π1⋅2π⋅2=1
所以 1 σ 2 π ∫ − ∞ + ∞ e − ( x − a ) 2 2 σ 2 d x \frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{+\infty}e^{-\frac{(x-a)^2}{2\sigma^2}}dx σ2π1∫−∞+∞e−2σ2(x−a)2dx收敛于1
(4)
∫ 0 + ∞ 1 + x 2 1 + x 4 d x = ∫ 0 + ∞ 1 x 2 + 1 1 x 2 + x 2 d x = ∫ 0 + ∞ d ( x − 1 x ) ( x − 1 x ) 2 + 2 = ∫ − ∞ + ∞ d u u 2 + 2 = lim A → + ∞ ∫ − A A d u u 2 + 2 = 2 lim A → + ∞ a r c t a n ( 2 2 A ) = 2 2 π \begin{aligned} \int_0^{+\infty}\frac{1+x^2}{1+x^4}dx&=\int_0^{+\infty}\frac{\frac{1}{x^2}+1}{\frac{1}{x^2}+x^2}dx\\ &=\int_0^{+\infty}\frac{d(x-\frac{1}{x})}{(x-\frac{1}{x})^2+2}\\ &=\int_{-\infty}^{+\infty}\frac{du}{u^2+2}\\ &=\lim_{A\to+\infty}\int_{-A}^{A}\frac{du}{u^2+2}\\ &=\sqrt{2}\lim_{A\to+\infty}arctan(\frac{\sqrt{2}}{2}A)\\ &=\frac{\sqrt{2}}{2}\pi \end{aligned} ∫0+∞1+x41+x2dx=∫0+∞x21+x2x21+1dx=∫0+∞(x−x1)2+2d(x−x1)=∫−∞+∞u2+2du=A→+∞lim∫−AAu2+2du=2A→+∞limarctan(22A)=22π
所以 ∫ 0 + ∞ 1 + x 2 1 + x 4 d x \int_0^{+\infty}\frac{1+x^2}{1+x^4}dx ∫0+∞1+x41+x2dx收敛于 2 2 π \frac{\sqrt{2}}{2}\pi 22π
(5)
∫ 0 + ∞ x s i n x d x = lim A → + ∞ ∫ 0 A x s i n x d x = lim A → + ∞ ( − A c o s A + s i n A ) = − ∞ \begin{aligned} \int_0^{+\infty}xsinxdx&=\lim_{A\to+\infty}\int_0^Axsinxdx\\ &=\lim_{A\to+\infty}(-AcosA+sinA)\\ &=-\infty \end{aligned} ∫0+∞xsinxdx=A→+∞lim∫0Axsinxdx=A→+∞lim(−AcosA+sinA)=−∞
所以 ∫ 0 + ∞ x s i n x d x \int_0^{+\infty}xsinxdx ∫0+∞xsinxdx发散
(6)
∫ 4 + ∞ d x x x − 1 = ∫ 3 + ∞ d ( t 2 + 1 ) ( t 2 + 1 ) t = 2 lim A → + ∞ ∫ 3 A d t t 2 + 1 = 2 lim A → + ∞ ( a r c t a n A − a r c t a n 3 ) = π 3 \begin{aligned} \int_4^{+\infty}\frac{dx}{x\sqrt{x-1}}&=\int_{\sqrt{3}}^{+\infty}\frac{d(t^2+1)}{(t^2+1)t}\\ &=2\lim_{A\to+\infty}\int_{\sqrt{3}}^A\frac{dt}{t^2+1}\\ &=2\lim_{A\to+\infty}(arctanA-arctan\sqrt{3})\\ &=\frac{\pi}{3} \end{aligned} ∫4+∞xx−1dx=∫3+∞(t2+1)td(t2+1)=2A→+∞lim∫3At2+1dt=2A→+∞lim(arctanA−arctan3)=3π
所以 ∫ 4 + ∞ d x x x − 1 \int_4^{+\infty}\frac{dx}{x\sqrt{x-1}} ∫4+∞xx−1dx收敛于 π 3 \frac{\pi}{3} 3π
(7)
∫ 0 + ∞ a r c t a n x ( 1 + x 2 ) 3 2 d x = ∫ 0 π 2 t d ( t a n t ) ( 1 + t a n 2 t ) 3 2 = ∫ 0 π 2 t c o s t d t = ( t s i n t + c o s t ) ∣ 0 π 2 = π 2 − 1 \begin{aligned} \int_0^{+\infty}\frac{arctanx}{(1+x^2)^{\frac{3}{2}}}dx&=\int_0^{\frac{\pi}{2}}\frac{td(tant)}{(1+tan^2t)^{\frac{3}{2}}}\\ &=\int_0^{\frac{\pi}{2}}tcostdt\\ &=(tsint+cost)|_0^{\frac{\pi}{2}}\\ &=\frac{\pi}{2}-1 \end{aligned} ∫0+∞(1+x2)23arctanxdx=∫02π(1+tan2t)23td(tant)=∫02πtcostdt=(tsint+cost)∣02π=2π−1
所以 ∫ 0 + ∞ a r c t a n x ( 1 + x 2 ) 3 2 d x \int_0^{+\infty}\frac{arctanx}{(1+x^2)^{\frac{3}{2}}}dx ∫0+∞(1+x2)23arctanxdx收敛于 π 2 − 1 \frac{\pi}{2}-1 2π−1
(8)
∫ − ∞ + ∞ d x x 2 + 2 x + 2 = ∫ − ∞ + ∞ d ( t − 1 ) t 2 + 1 = 2 lim A → + ∞ ∫ 0 A d t t 2 + 1 = 2 lim A → + ∞ ( a r c t a n A ) = π \begin{aligned} \int_{-\infty}^{+\infty}\frac{dx}{x^2+2x+2}&=\int_{-\infty}^{+\infty}\frac{d(t-1)}{t^2+1}\\ &=2\lim_{A\to+\infty}\int_0^A\frac{dt}{t^2+1}\\ &=2\lim_{A\to+\infty}(arctanA)\\ &=\pi \end{aligned} ∫−∞+∞x2+2x+2dx=∫−∞+∞t2+1d(t−1)=2A→+∞lim∫0At2+1dt=2A→+∞lim(arctanA)=π
所以 ∫ − ∞ + ∞ d x x 2 + 2 x + 2 \int_{-\infty}^{+\infty}\frac{dx}{x^2+2x+2} ∫−∞+∞x2+2x+2dx收敛于 π \pi π
(9)
∫ 0 + ∞ e − x c o s x d x = lim A → + ∞ ∫ 0 A e − x c o s x d x = lim A → + ∞ [ e − A ( s i n A − c o s A ) 2 + 1 2 ] = 1 2 \begin{aligned} \int_0^{+\infty}e^{-x}cosxdx&=\lim_{A\to+\infty}\int_0^Ae^{-x}cosxdx\\ &=\lim_{A\to+\infty}[\frac{e^{-A}(sinA-cosA)}{2}+\frac{1}{2}]\\ &=\frac{1}{2} \end{aligned} ∫0+∞e−xcosxdx=A→+∞lim∫0Ae−xcosxdx=A→+∞lim[2e−A(sinA−cosA)+21]=21
所以 ∫ 0 + ∞ e − x c o s x d x \int_0^{+\infty}e^{-x}cosxdx ∫0+∞e−xcosxdx收敛于 1 2 \frac{1}{2} 21
(10)
∫ − 1 1 d x 1 − x 2 = ∫ π 0 d c o s t s i n t = − ∫ π 0 d t = π \begin{aligned} \int_{-1}^1\frac{dx}{\sqrt{1-x^2}}&=\int_\pi^0\frac{dcost}{sint}\\ &=-\int_\pi^0dt\\ &=\pi \end{aligned} ∫−111−x2dx=∫π0sintdcost=−∫π0dt=π
所以 ∫ − 1 1 d x 1 − x 2 \int_{-1}^1\frac{dx}{\sqrt{1-x^2}} ∫−111−x2dx收敛于 π \pi π
(11)
∫ 0 1 2 d x x l n x = lim A → 0 + ∫ A 1 2 d x x l n x = lim A → 0 + [ l n ∣ l n ( 1 2 ) ∣ − l n ∣ l n A ∣ ] = − ∞ \begin{aligned} \int_0^{\frac{1}{2}}\frac{dx}{xlnx}&=\lim_{A\to0^+}\int_A^{\frac{1}{2}}\frac{dx}{xlnx}\\ &=\lim_{A\to0^+}[ln|ln(\frac{1}{2})|-ln|lnA|]\\ &=-\infty \end{aligned} ∫021xlnxdx=A→0+lim∫A21xlnxdx=A→0+lim[ln∣ln(21)∣−ln∣lnA∣]=−∞
所以 ∫ 0 1 2 d x x l n x \int_0^{\frac{1}{2}}\frac{dx}{xlnx} ∫021xlnxdx发散
(12)
∫ 0 1 2 d x x l n 2 x = lim A → 0 + ∫ A 1 2 d x x l n 2 x = lim A → 0 + ( 1 l n 2 + 1 A ) = 1 l n 2 \begin{aligned} \int_0^{\frac{1}{2}}\frac{dx}{xln^2x}&=\lim_{A\to0^+}\int_A^{\frac{1}{2}}\frac{dx}{xln^2x}\\ &=\lim_{A\to0^+}(\frac{1}{ln2}+\frac{1}{A})\\ &=\frac{1}{ln2} \end{aligned} ∫021xln2xdx=A→0+lim∫A21xln2xdx=A→0+lim(ln21+A1)=ln21
所以 ∫ 0 1 2 d x x l n 2 x \int_0^{\frac{1}{2}}\frac{dx}{xln^2x} ∫021xln2xdx收敛于 1 l n 2 \frac{1}{ln2} ln21
(13)
∫ 0 + ∞ d x 1 + x 4 = ∫ + ∞ 0 d 1 t 1 + 1 t 4 = ∫ 0 + ∞ t 2 d t 1 + t 4 \begin{aligned} \int_0^{+\infty}\frac{dx}{1+x^4}&=\int_{+\infty}^0\frac{d\frac{1}{t}}{1+\frac{1}{t^4}}\\ &=\int_0^{+\infty}\frac{t^2dt}{1+t^4} \end{aligned} ∫0+∞1+x4dx=∫+∞01+t41dt1=∫0+∞1+t4t2dt
两式相加,得
∫ 0 + ∞ d x 1 + x 4 = 1 2 ∫ 0 + ∞ 1 + x 2 1 + x 4 d x = 2 4 π \begin{aligned} \int_0^{+\infty}\frac{dx}{1+x^4}&=\frac{1}{2}\int_0^{+\infty}\frac{1+x^2}{1+x^4}dx\\ &=\frac{\sqrt{2}}{4}\pi \end{aligned} ∫0+∞1+x4dx=21∫0+∞1+x41+x2dx=42π
所以 ∫ 0 + ∞ d x 1 + x 4 \int_0^{+\infty}\frac{dx}{1+x^4} ∫0+∞1+x4dx收敛于 2 4 π \frac{\sqrt{2}}{4}\pi 42π - 证明下列各式(
σ
>
0
\sigma>0
σ>0):
(1) 1 σ 2 π ∫ − ∞ + ∞ ( x − a ) 2 e − ( x − a ) 2 2 σ 2 d x = σ 2 \frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{+\infty}(x-a)^2e^{-\frac{(x-a)^2}{2\sigma^2}}dx=\sigma^2 σ2π1∫−∞+∞(x−a)2e−2σ2(x−a)2dx=σ2
(2) 1 σ 2 π ∫ − ∞ + ∞ x e − ( x − a ) 2 2 σ 2 d x = a . \frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{+\infty}xe^{-\frac{(x-a)^2}{2\sigma^2}}dx=a. σ2π1∫−∞+∞xe−2σ2(x−a)2dx=a.
证明:
(1)
1 σ 2 π ∫ − ∞ + ∞ ( x − a ) 2 e − ( x − a ) 2 2 σ 2 d x = 2 σ 2 π ∫ − ∞ + ∞ ( x − a 2 σ ) 2 e − ( x − a 2 σ ) 2 d ( x − a 2 σ ) = 2 σ 2 π ∫ − ∞ + ∞ t 2 e − t 2 d t = σ 2 π ∫ − ∞ + ∞ e − t 2 d t = σ 2 \begin{aligned} \frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{+\infty}(x-a)^2e^{-\frac{(x-a)^2}{2\sigma^2}}dx&=\frac{2\sigma^2}{\sqrt{\pi}}\int_{-\infty}^{+\infty}(\frac{x-a}{\sqrt{2}\sigma})^2e^{-(\frac{x-a}{\sqrt{2}\sigma})^2}d(\frac{x-a}{\sqrt{2}\sigma})\\ &=\frac{2\sigma^2}{\sqrt{\pi}}\int_{-\infty}^{+\infty}t^2e^{-t^2}dt\\ &=\frac{\sigma^2}{\sqrt{\pi}}\int_{-\infty}^{+\infty}e^{-t^2}dt\\ &=\sigma^2 \end{aligned} σ2π1∫−∞+∞(x−a)2e−2σ2(x−a)2dx=π2σ2∫−∞+∞(2σx−a)2e−(2σx−a)2d(2σx−a)=π2σ2∫−∞+∞t2e−t2dt=πσ2∫−∞+∞e−t2dt=σ2
(2)
1 σ 2 π ∫ − ∞ + ∞ x e − ( x − a ) 2 2 σ 2 d x = 2 σ π ∫ − ∞ + ∞ ( x − a 2 σ ) e − ( x − a 2 σ ) 2 d ( x − a 2 σ ) + a π ∫ − ∞ + ∞ e − ( x − a 2 σ ) 2 d ( x − a 2 σ ) = 2 σ π ∫ − ∞ + ∞ t e − t 2 d t + a π ∫ − ∞ + ∞ e − t 2 d t = a \begin{aligned} \frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{+\infty}xe^{-\frac{(x-a)^2}{2\sigma^2}}dx&=\frac{\sqrt{2}\sigma}{\sqrt{\pi}}\int_{-\infty}^{+\infty}(\frac{x-a}{\sqrt{2}\sigma})e^{-(\frac{x-a}{\sqrt{2}\sigma})^2}d(\frac{x-a}{\sqrt{2}\sigma})+\frac{a}{\sqrt{\pi}}\int_{-\infty}^{+\infty}e^{-(\frac{x-a}{\sqrt{2}\sigma})^2}d(\frac{x-a}{\sqrt{2}\sigma})\\ &=\frac{\sqrt{2}\sigma}{\sqrt{\pi}}\int_{-\infty}^{+\infty}te^{-t^2}dt+\frac{a}{\sqrt{\pi}}\int_{-\infty}^{+\infty}e^{-t^2}dt\\ &=a \end{aligned} σ2π1∫−∞+∞xe−2σ2(x−a)2dx=π2σ∫−∞+∞(2σx−a)e−(2σx−a)2d(2σx−a)+πa∫−∞+∞e−(2σx−a)2d(2σx−a)=π2σ∫−∞+∞te−t2dt+πa∫−∞+∞e−t2dt=a