高数习题11.1(上)

  1. 判别下列广义积分的敛散性;若收敛,求出其值:
    (1) ∫ 0 + ∞ x e − x d x ; \int_0^{+\infty}xe^{-x}dx; 0+xexdx;
    (2) ∫ 0 + ∞ d x ( x + 1 ) ( x + 2 ) ; \int_0^{+\infty}\frac{dx}{(x+1)(x+2)}; 0+(x+1)(x+2)dx;
    (3) 1 σ 2 π ∫ − ∞ + ∞ e − ( x − a ) 2 2 σ 2 d x ( σ > 0 ) ; \frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{+\infty}e^{-\frac{(x-a)^2}{2\sigma^2}}dx(\sigma>0); σ2π 1+e2σ2(xa)2dx(σ>0);
    (4) ∫ 0 + ∞ 1 + x 2 1 + x 4 d x ; \int_0^{+\infty}\frac{1+x^2}{1+x^4}dx; 0+1+x41+x2dx;
    (5) ∫ 0 + ∞ x s i n x d x ; \int_0^{+\infty}xsinxdx; 0+xsinxdx;
    (6) ∫ 4 + ∞ d x x x − 1 ; \int_4^{+\infty}\frac{dx}{x\sqrt{x-1}}; 4+xx1 dx;
    (7) ∫ 0 + ∞ a r c t a n x ( 1 + x 2 ) 3 2 d x ; \int_0^{+\infty}\frac{arctanx}{(1+x^2)^{\frac{3}{2}}}dx; 0+(1+x2)23arctanxdx;
    (8) ∫ − ∞ + ∞ d x x 2 + 2 x + 2 ; \int_{-\infty}^{+\infty}\frac{dx}{x^2+2x+2}; +x2+2x+2dx;
    (9) ∫ 0 + ∞ e − x c o s x d x ; \int_0^{+\infty}e^{-x}cosxdx; 0+excosxdx;
    (10) ∫ − 1 1 d x 1 − x 2 ; \int_{-1}^1\frac{dx}{\sqrt{1-x^2}}; 111x2 dx;
    (11) ∫ 0 1 2 d x x l n x ; \int_0^{\frac{1}{2}}\frac{dx}{xlnx}; 021xlnxdx;
    (12) ∫ 0 1 2 d x x l n 2 x ; \int_0^{\frac{1}{2}}\frac{dx}{xln^2x}; 021xln2xdx;
    (13) ∫ 0 + ∞ d x 1 + x 4 . \int_0^{+\infty}\frac{dx}{1+x^4}. 0+1+x4dx.
    解:
    (1)
    ∫ 0 + ∞ x e − x d x = lim ⁡ A → + ∞ ∫ 0 A x e − x d x = lim ⁡ A → + ∞ ( − A e − A − e − A + 1 ) = 1 \begin{aligned} \int_0^{+\infty}xe^{-x}dx&=\lim_{A\to+\infty}\int_0^Axe^{-x}dx\\ &=\lim_{A\to+\infty}(-Ae^{-A}-e^{-A}+1)\\ &=1 \end{aligned} 0+xexdx=A+lim0Axexdx=A+lim(AeAeA+1)=1
    所以 ∫ 0 + ∞ x e − x d x \int_0^{+\infty}xe^{-x}dx 0+xexdx收敛于1
    (2)
    ∫ 0 + ∞ d x ( x + 1 ) ( x + 2 ) = lim ⁡ A → + ∞ ∫ 0 A d x ( x + 1 ) ( x + 2 ) = lim ⁡ A → + ∞ [ l n ( A + 1 ) − l n ( A + 2 ) + l n 2 ] = l n 2 \begin{aligned} \int_0^{+\infty}\frac{dx}{(x+1)(x+2)}&=\lim_{A\to+\infty}\int_0^A\frac{dx}{(x+1)(x+2)}\\ &=\lim_{A\to+\infty}[ln(A+1)-ln(A+2)+ln2]\\ &=ln2 \end{aligned} 0+(x+1)(x+2)dx=A+lim0A(x+1)(x+2)dx=A+lim[ln(A+1)ln(A+2)+ln2]=ln2
    所以 ∫ 0 + ∞ d x ( x + 1 ) ( x + 2 ) \int_0^{+\infty}\frac{dx}{(x+1)(x+2)} 0+(x+1)(x+2)dx收敛于ln2
    (3)
    1 σ 2 π ∫ − ∞ + ∞ e − ( x − a ) 2 2 σ 2 d x = 1 π ∫ − ∞ + ∞ e − ( x − a 2 σ ) 2 d ( x − a σ 2 ) = 1 π ⋅ π 2 ⋅ 2 = 1 \begin{aligned} \frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{+\infty}e^{-\frac{(x-a)^2}{2\sigma^2}}dx&=\frac{1}{\sqrt{\pi}}\int_{-\infty}^{+\infty}e^{-(\frac{x-a}{\sqrt{2}\sigma})^2}d(\frac{x-a}{\sigma\sqrt{2}})\\ &=\frac{1}{\sqrt{\pi}}\cdot\frac{\sqrt{\pi}}{2}\cdot2\\ &=1 \end{aligned} σ2π 1+e2σ2(xa)2dx=π 1+e(2 σxa)2d(σ2 xa)=π 12π 2=1
    所以 1 σ 2 π ∫ − ∞ + ∞ e − ( x − a ) 2 2 σ 2 d x \frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{+\infty}e^{-\frac{(x-a)^2}{2\sigma^2}}dx σ2π 1+e2σ2(xa)2dx收敛于1
    (4)
    ∫ 0 + ∞ 1 + x 2 1 + x 4 d x = ∫ 0 + ∞ 1 x 2 + 1 1 x 2 + x 2 d x = ∫ 0 + ∞ d ( x − 1 x ) ( x − 1 x ) 2 + 2 = ∫ − ∞ + ∞ d u u 2 + 2 = lim ⁡ A → + ∞ ∫ − A A d u u 2 + 2 = 2 lim ⁡ A → + ∞ a r c t a n ( 2 2 A ) = 2 2 π \begin{aligned} \int_0^{+\infty}\frac{1+x^2}{1+x^4}dx&=\int_0^{+\infty}\frac{\frac{1}{x^2}+1}{\frac{1}{x^2}+x^2}dx\\ &=\int_0^{+\infty}\frac{d(x-\frac{1}{x})}{(x-\frac{1}{x})^2+2}\\ &=\int_{-\infty}^{+\infty}\frac{du}{u^2+2}\\ &=\lim_{A\to+\infty}\int_{-A}^{A}\frac{du}{u^2+2}\\ &=\sqrt{2}\lim_{A\to+\infty}arctan(\frac{\sqrt{2}}{2}A)\\ &=\frac{\sqrt{2}}{2}\pi \end{aligned} 0+1+x41+x2dx=0+x21+x2x21+1dx=0+(xx1)2+2d(xx1)=+u2+2du=A+limAAu2+2du=2 A+limarctan(22 A)=22 π
    所以 ∫ 0 + ∞ 1 + x 2 1 + x 4 d x \int_0^{+\infty}\frac{1+x^2}{1+x^4}dx 0+1+x41+x2dx收敛于 2 2 π \frac{\sqrt{2}}{2}\pi 22 π
    (5)
    ∫ 0 + ∞ x s i n x d x = lim ⁡ A → + ∞ ∫ 0 A x s i n x d x = lim ⁡ A → + ∞ ( − A c o s A + s i n A ) = − ∞ \begin{aligned} \int_0^{+\infty}xsinxdx&=\lim_{A\to+\infty}\int_0^Axsinxdx\\ &=\lim_{A\to+\infty}(-AcosA+sinA)\\ &=-\infty \end{aligned} 0+xsinxdx=A+lim0Axsinxdx=A+lim(AcosA+sinA)=
    所以 ∫ 0 + ∞ x s i n x d x \int_0^{+\infty}xsinxdx 0+xsinxdx发散
    (6)
    ∫ 4 + ∞ d x x x − 1 = ∫ 3 + ∞ d ( t 2 + 1 ) ( t 2 + 1 ) t = 2 lim ⁡ A → + ∞ ∫ 3 A d t t 2 + 1 = 2 lim ⁡ A → + ∞ ( a r c t a n A − a r c t a n 3 ) = π 3 \begin{aligned} \int_4^{+\infty}\frac{dx}{x\sqrt{x-1}}&=\int_{\sqrt{3}}^{+\infty}\frac{d(t^2+1)}{(t^2+1)t}\\ &=2\lim_{A\to+\infty}\int_{\sqrt{3}}^A\frac{dt}{t^2+1}\\ &=2\lim_{A\to+\infty}(arctanA-arctan\sqrt{3})\\ &=\frac{\pi}{3} \end{aligned} 4+xx1 dx=3 +(t2+1)td(t2+1)=2A+lim3 At2+1dt=2A+lim(arctanAarctan3 )=3π
    所以 ∫ 4 + ∞ d x x x − 1 \int_4^{+\infty}\frac{dx}{x\sqrt{x-1}} 4+xx1 dx收敛于 π 3 \frac{\pi}{3} 3π
    (7)
    ∫ 0 + ∞ a r c t a n x ( 1 + x 2 ) 3 2 d x = ∫ 0 π 2 t d ( t a n t ) ( 1 + t a n 2 t ) 3 2 = ∫ 0 π 2 t c o s t d t = ( t s i n t + c o s t ) ∣ 0 π 2 = π 2 − 1 \begin{aligned} \int_0^{+\infty}\frac{arctanx}{(1+x^2)^{\frac{3}{2}}}dx&=\int_0^{\frac{\pi}{2}}\frac{td(tant)}{(1+tan^2t)^{\frac{3}{2}}}\\ &=\int_0^{\frac{\pi}{2}}tcostdt\\ &=(tsint+cost)|_0^{\frac{\pi}{2}}\\ &=\frac{\pi}{2}-1 \end{aligned} 0+(1+x2)23arctanxdx=02π(1+tan2t)23td(tant)=02πtcostdt=(tsint+cost)02π=2π1
    所以 ∫ 0 + ∞ a r c t a n x ( 1 + x 2 ) 3 2 d x \int_0^{+\infty}\frac{arctanx}{(1+x^2)^{\frac{3}{2}}}dx 0+(1+x2)23arctanxdx收敛于 π 2 − 1 \frac{\pi}{2}-1 2π1
    (8)
    ∫ − ∞ + ∞ d x x 2 + 2 x + 2 = ∫ − ∞ + ∞ d ( t − 1 ) t 2 + 1 = 2 lim ⁡ A → + ∞ ∫ 0 A d t t 2 + 1 = 2 lim ⁡ A → + ∞ ( a r c t a n A ) = π \begin{aligned} \int_{-\infty}^{+\infty}\frac{dx}{x^2+2x+2}&=\int_{-\infty}^{+\infty}\frac{d(t-1)}{t^2+1}\\ &=2\lim_{A\to+\infty}\int_0^A\frac{dt}{t^2+1}\\ &=2\lim_{A\to+\infty}(arctanA)\\ &=\pi \end{aligned} +x2+2x+2dx=+t2+1d(t1)=2A+lim0At2+1dt=2A+lim(arctanA)=π
    所以 ∫ − ∞ + ∞ d x x 2 + 2 x + 2 \int_{-\infty}^{+\infty}\frac{dx}{x^2+2x+2} +x2+2x+2dx收敛于 π \pi π
    (9)
    ∫ 0 + ∞ e − x c o s x d x = lim ⁡ A → + ∞ ∫ 0 A e − x c o s x d x = lim ⁡ A → + ∞ [ e − A ( s i n A − c o s A ) 2 + 1 2 ] = 1 2 \begin{aligned} \int_0^{+\infty}e^{-x}cosxdx&=\lim_{A\to+\infty}\int_0^Ae^{-x}cosxdx\\ &=\lim_{A\to+\infty}[\frac{e^{-A}(sinA-cosA)}{2}+\frac{1}{2}]\\ &=\frac{1}{2} \end{aligned} 0+excosxdx=A+lim0Aexcosxdx=A+lim[2eA(sinAcosA)+21]=21
    所以 ∫ 0 + ∞ e − x c o s x d x \int_0^{+\infty}e^{-x}cosxdx 0+excosxdx收敛于 1 2 \frac{1}{2} 21
    (10)
    ∫ − 1 1 d x 1 − x 2 = ∫ π 0 d c o s t s i n t = − ∫ π 0 d t = π \begin{aligned} \int_{-1}^1\frac{dx}{\sqrt{1-x^2}}&=\int_\pi^0\frac{dcost}{sint}\\ &=-\int_\pi^0dt\\ &=\pi \end{aligned} 111x2 dx=π0sintdcost=π0dt=π
    所以 ∫ − 1 1 d x 1 − x 2 \int_{-1}^1\frac{dx}{\sqrt{1-x^2}} 111x2 dx收敛于 π \pi π
    (11)
    ∫ 0 1 2 d x x l n x = lim ⁡ A → 0 + ∫ A 1 2 d x x l n x = lim ⁡ A → 0 + [ l n ∣ l n ( 1 2 ) ∣ − l n ∣ l n A ∣ ] = − ∞ \begin{aligned} \int_0^{\frac{1}{2}}\frac{dx}{xlnx}&=\lim_{A\to0^+}\int_A^{\frac{1}{2}}\frac{dx}{xlnx}\\ &=\lim_{A\to0^+}[ln|ln(\frac{1}{2})|-ln|lnA|]\\ &=-\infty \end{aligned} 021xlnxdx=A0+limA21xlnxdx=A0+lim[lnln(21)lnlnA]=
    所以 ∫ 0 1 2 d x x l n x \int_0^{\frac{1}{2}}\frac{dx}{xlnx} 021xlnxdx发散
    (12)
    ∫ 0 1 2 d x x l n 2 x = lim ⁡ A → 0 + ∫ A 1 2 d x x l n 2 x = lim ⁡ A → 0 + ( 1 l n 2 + 1 A ) = 1 l n 2 \begin{aligned} \int_0^{\frac{1}{2}}\frac{dx}{xln^2x}&=\lim_{A\to0^+}\int_A^{\frac{1}{2}}\frac{dx}{xln^2x}\\ &=\lim_{A\to0^+}(\frac{1}{ln2}+\frac{1}{A})\\ &=\frac{1}{ln2} \end{aligned} 021xln2xdx=A0+limA21xln2xdx=A0+lim(ln21+A1)=ln21
    所以 ∫ 0 1 2 d x x l n 2 x \int_0^{\frac{1}{2}}\frac{dx}{xln^2x} 021xln2xdx收敛于 1 l n 2 \frac{1}{ln2} ln21
    (13)
    ∫ 0 + ∞ d x 1 + x 4 = ∫ + ∞ 0 d 1 t 1 + 1 t 4 = ∫ 0 + ∞ t 2 d t 1 + t 4 \begin{aligned} \int_0^{+\infty}\frac{dx}{1+x^4}&=\int_{+\infty}^0\frac{d\frac{1}{t}}{1+\frac{1}{t^4}}\\ &=\int_0^{+\infty}\frac{t^2dt}{1+t^4} \end{aligned} 0+1+x4dx=+01+t41dt1=0+1+t4t2dt
    两式相加,得
    ∫ 0 + ∞ d x 1 + x 4 = 1 2 ∫ 0 + ∞ 1 + x 2 1 + x 4 d x = 2 4 π \begin{aligned} \int_0^{+\infty}\frac{dx}{1+x^4}&=\frac{1}{2}\int_0^{+\infty}\frac{1+x^2}{1+x^4}dx\\ &=\frac{\sqrt{2}}{4}\pi \end{aligned} 0+1+x4dx=210+1+x41+x2dx=42 π
    所以 ∫ 0 + ∞ d x 1 + x 4 \int_0^{+\infty}\frac{dx}{1+x^4} 0+1+x4dx收敛于 2 4 π \frac{\sqrt{2}}{4}\pi 42 π
  2. 证明下列各式( σ > 0 \sigma>0 σ>0):
    (1) 1 σ 2 π ∫ − ∞ + ∞ ( x − a ) 2 e − ( x − a ) 2 2 σ 2 d x = σ 2 \frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{+\infty}(x-a)^2e^{-\frac{(x-a)^2}{2\sigma^2}}dx=\sigma^2 σ2π 1+(xa)2e2σ2(xa)2dx=σ2
    (2) 1 σ 2 π ∫ − ∞ + ∞ x e − ( x − a ) 2 2 σ 2 d x = a . \frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{+\infty}xe^{-\frac{(x-a)^2}{2\sigma^2}}dx=a. σ2π 1+xe2σ2(xa)2dx=a.
    证明:
    (1)
    1 σ 2 π ∫ − ∞ + ∞ ( x − a ) 2 e − ( x − a ) 2 2 σ 2 d x = 2 σ 2 π ∫ − ∞ + ∞ ( x − a 2 σ ) 2 e − ( x − a 2 σ ) 2 d ( x − a 2 σ ) = 2 σ 2 π ∫ − ∞ + ∞ t 2 e − t 2 d t = σ 2 π ∫ − ∞ + ∞ e − t 2 d t = σ 2 \begin{aligned} \frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{+\infty}(x-a)^2e^{-\frac{(x-a)^2}{2\sigma^2}}dx&=\frac{2\sigma^2}{\sqrt{\pi}}\int_{-\infty}^{+\infty}(\frac{x-a}{\sqrt{2}\sigma})^2e^{-(\frac{x-a}{\sqrt{2}\sigma})^2}d(\frac{x-a}{\sqrt{2}\sigma})\\ &=\frac{2\sigma^2}{\sqrt{\pi}}\int_{-\infty}^{+\infty}t^2e^{-t^2}dt\\ &=\frac{\sigma^2}{\sqrt{\pi}}\int_{-\infty}^{+\infty}e^{-t^2}dt\\ &=\sigma^2 \end{aligned} σ2π 1+(xa)2e2σ2(xa)2dx=π 2σ2+(2 σxa)2e(2 σxa)2d(2 σxa)=π 2σ2+t2et2dt=π σ2+et2dt=σ2
    (2)
    1 σ 2 π ∫ − ∞ + ∞ x e − ( x − a ) 2 2 σ 2 d x = 2 σ π ∫ − ∞ + ∞ ( x − a 2 σ ) e − ( x − a 2 σ ) 2 d ( x − a 2 σ ) + a π ∫ − ∞ + ∞ e − ( x − a 2 σ ) 2 d ( x − a 2 σ ) = 2 σ π ∫ − ∞ + ∞ t e − t 2 d t + a π ∫ − ∞ + ∞ e − t 2 d t = a \begin{aligned} \frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{+\infty}xe^{-\frac{(x-a)^2}{2\sigma^2}}dx&=\frac{\sqrt{2}\sigma}{\sqrt{\pi}}\int_{-\infty}^{+\infty}(\frac{x-a}{\sqrt{2}\sigma})e^{-(\frac{x-a}{\sqrt{2}\sigma})^2}d(\frac{x-a}{\sqrt{2}\sigma})+\frac{a}{\sqrt{\pi}}\int_{-\infty}^{+\infty}e^{-(\frac{x-a}{\sqrt{2}\sigma})^2}d(\frac{x-a}{\sqrt{2}\sigma})\\ &=\frac{\sqrt{2}\sigma}{\sqrt{\pi}}\int_{-\infty}^{+\infty}te^{-t^2}dt+\frac{a}{\sqrt{\pi}}\int_{-\infty}^{+\infty}e^{-t^2}dt\\ &=a \end{aligned} σ2π 1+xe2σ2(xa)2dx=π 2 σ+(2 σxa)e(2 σxa)2d(2 σxa)+π a+e(2 σxa)2d(2 σxa)=π 2 σ+tet2dt+π a+et2dt=a
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值