- 证明基本三角函数系的正交性中的等式:
∫ − π π s i n m x ⋅ s i n n x d x = 0 ; ∫ − π π s i n m x ⋅ c o s n x d x = 0. ( m ≠ n ) \begin{aligned} \int_{-\pi}^{\pi}sinmx\cdot sinnxdx=0;\\ \int_{-\pi}^{\pi}sinmx\cdot cosnxdx=0.\\ \end{aligned}(m\neq n) ∫−ππsinmx⋅sinnxdx=0;∫−ππsinmx⋅cosnxdx=0.(m=n)
证明:
∫ − π π s i n m x ⋅ s i n n x d x = ∫ − π π c o s ( m − n ) x − c o s ( m + n ) x 2 d x = 1 2 [ ∫ − π π c o s ( m − n ) x d x − ∫ − π π c o s ( m + n ) x d x ] = s i n ( m − n ) π m − n − s i n ( m + n ) π m + n = 0 \begin{aligned} \int_{-\pi}^{\pi}sinmx\cdot sinnxdx&=\int_{-\pi}^{\pi}\frac{cos(m-n)x-cos(m+n)x}{2}dx\\ &=\frac{1}{2}[\int_{-\pi}^{\pi}cos(m-n)xdx-\int_{-\pi}^{\pi}cos(m+n)xdx]\\ &=\frac{sin(m-n)\pi}{m-n}-\frac{sin(m+n)\pi}{m+n}\\ &=0\\ \end{aligned} ∫−ππsinmx⋅sinnxdx=∫−ππ2cos(m−n)x−cos(m+n)xdx=21[∫−ππcos(m−n)xdx−∫−ππcos(m+n)xdx]=m−nsin(m−n)π−m+nsin(m+n)π=0
∫ − π π s i n m x ⋅ c o s n x d x = ∫ − π π s i n ( m + n ) x − s i n ( m − n ) x 2 d x = 1 2 [ ∫ − π π s i n ( m + n ) x d x − ∫ − π π s i n ( m − n ) x d x ] = 0 \begin{aligned} \int_{-\pi}^{\pi}sinmx\cdot cosnxdx&=\int_{-\pi}^{\pi}\frac{sin(m+n)x-sin(m-n)x}{2}dx\\ &=\frac{1}{2}[\int_{-\pi}^{\pi}sin(m+n)xdx-\int_{-\pi}^{\pi}sin(m-n)xdx]\\ &=0\\ \end{aligned} ∫−ππsinmx⋅cosnxdx=∫−ππ2sin(m+n)x−sin(m−n)xdx=21[∫−ππsin(m+n)xdx−∫−ππsin(m−n)xdx]=0 - 证明本节中定义的范数
(
f
,
g
)
(f,g)
(f,g)具有以下性质:
( f , C 1 g 1 + C 2 g 2 ) = C 1 ( f , g 1 ) + C 2 ( f , g 2 ) ( C 1 , C 2 为 常 数 ) . (f,C_1g_1+C_2g_2)=C_1(f,g_1)+C_2(f,g_2)(C_1,C_2为常数). (f,C1g1+C2g2)=C1(f,g1)+C2(f,g2)(C1,C2为常数).
证明:
( f , C 1 g 1 + C 2 g 2 ) = 1 π ∫ − π π f ( C 1 g 1 + C 2 g 2 ) d x = C 1 1 π ∫ − π π f g 1 d x + C 2 1 π ∫ − π π f g 2 d x = C 1 ( f , g 1 ) + C 2 ( f , g 2 ) \begin{aligned} (f,C_1g_1+C_2g_2)&=\frac{1}{\pi}\int_{-\pi}^{\pi}f(C_1g_1+C_2g_2)dx\\ &=C_1\frac{1}{\pi}\int_{-\pi}^{\pi}fg_1dx+C_2\frac{1}{\pi}\int_{-\pi}^{\pi}fg_2dx\\ &=C_1(f,g_1)+C_2(f,g_2)\\ \end{aligned} (f,C1g1+C2g2)=π1∫−ππf(C1g1+C2g2)dx=C1π1∫−ππfg1dx+C2π1∫−ππfg2dx=C1(f,g1)+C2(f,g2) - 证明
∣
(
f
,
g
)
∣
≤
∣
∣
f
∣
∣
⋅
∣
∣
g
∣
∣
|(f,g)|\leq ||f||\cdot||g||
∣(f,g)∣≤∣∣f∣∣⋅∣∣g∣∣
证明:
∣ ∣ f − λ g ∣ ∣ 2 = ∣ ∣ f ∣ ∣ 2 − 2 λ ( f , g ) + λ 2 ∣ ∣ g ∣ ∣ 2 ≥ 0 ||f-\lambda g||^2=||f||^2-2\lambda(f,g)+\lambda^2||g||^2\geq0 ∣∣f−λg∣∣2=∣∣f∣∣2−2λ(f,g)+λ2∣∣g∣∣2≥0恒成立,所以 Δ = ( − 2 ( f , g ) ) 2 − 4 ∣ ∣ f ∣ ∣ 2 ⋅ ∣ ∣ g ∣ ∣ 2 ≤ 0 \Delta=(-2(f,g))^2-4||f||^2\cdot||g||^2\leq0 Δ=(−2(f,g))2−4∣∣f∣∣2⋅∣∣g∣∣2≤0即 ∣ ( f , g ) ∣ ≤ ∣ ∣ f ∣ ∣ ⋅ ∣ ∣ g ∣ ∣ |(f,g)|\leq ||f||\cdot||g|| ∣(f,g)∣≤∣∣f∣∣⋅∣∣g∣∣
高数习题12.1
最新推荐文章于 2021-07-07 22:48:46 发布
本文详细证明了基本三角函数系的正交性,即当m不等于n时,∫−ππsinmx⋅sinnxdx=0和∫−ππsinmx⋅cosnxdx=0。同时,展示了定义的范数具有性质(f,C1g1+C2g2)=C1(f,g1)+C2(f,g2),并证明了(f,g)的绝对值不超过f和g的范数的乘积,即∣(f,g)∣≤∣∣f∣∣⋅∣∣g∣∣。
摘要由CSDN通过智能技术生成