重点:文末有原文PDF下载链接!
定理的描述
例题:证明不同的极大线性无关组的向量个数是相等的
Proof:设
A
=
(
α
1
,
⋯
,
α
s
)
,
B
=
(
β
1
,
⋯
,
β
t
)
A = (\alpha_1,\cdots,\alpha_s),B=(\beta_1,\cdots,\beta_t)
A=(α1,⋯,αs),B=(β1,⋯,βt)是C的两个不同的极大线性无关组.所以
α
1
,
⋯
,
α
s
;
β
1
,
⋯
,
β
t
\alpha_1,\cdots,\alpha_s;\beta_1,\cdots,\beta_t
α1,⋯,αs;β1,⋯,βt
均线性无关. 一方面,因为向量组
A
A
A可以由向量组
B
B
B线性表示,所以有
s
≤
t
s \le t
s≤t
另一方面,因为向量组
B
B
B可以由向量组
A
A
A线性表示,所以有
t
≤
s
t \le s
t≤s
综上,
t
=
s
t=s
t=s. 即证命题.
一个补充定理
note: 这里的
≤
\le
≤是必然的,下面给出证明:
假设
s
>
t
s>t
s>t,且有已知因为向量组
A
A
A可以由向量组
B
B
B线性表示. 于是
α
i
=
a
i
1
β
1
+
⋯
+
a
i
t
β
t
\alpha_i = a_{i1}\beta_{1} + \cdots + a_{it}\beta_{t}
αi=ai1β1+⋯+aitβt
考虑线性组合:
k
1
α
1
+
⋯
+
k
s
α
s
=
0
k_{1}\alpha_{1} + \cdots + k_{s}\alpha_{s} = 0
k1α1+⋯+ksαs=0
即
k
1
(
a
11
β
1
+
⋯
+
a
1
t
β
t
)
+
⋯
+
k
s
(
a
s
1
β
1
+
⋯
+
a
s
t
β
t
)
=
0
k_{1}(a_{11}\beta_{1} + \cdots + a_{1t}\beta_{t}) + \cdots + k_{s}(a_{s1}\beta_{1} + \cdots + a_{st}\beta_{t}) = 0
k1(a11β1+⋯+a1tβt)+⋯+ks(as1β1+⋯+astβt)=0
由此,不难得到:
(
a
11
k
1
+
a
12
k
2
+
.
.
.
+
a
1
s
k
s
)
β
1
+
⋯
+
(
a
t
1
k
1
+
a
t
2
k
2
+
.
.
.
+
a
t
s
k
s
)
β
t
=
0
(a_{11}k_{1}+a_{12}k_{2}+...+a_{1s}k_{s})\beta_{1} + \cdots + (a_{t1}k_{1}+a_{t2}k_{2}+...+a_{ts}k_{s})\beta_{t} = 0
(a11k1+a12k2+...+a1sks)β1+⋯+(at1k1+at2k2+...+atsks)βt=0
考虑系数方程组
{
a
11
k
1
+
a
12
k
2
+
.
.
.
+
a
1
s
k
s
=
0
⋯
a
t
1
k
1
+
a
t
2
k
2
+
.
.
.
+
a
t
s
k
s
=
0
\left\{\begin{matrix} a_{11}k_{1}+a_{12}k_{2}+...+a_{1s}k_{s} = 0\\ \cdots\\ a_{t1}k_{1}+a_{t2}k_{2}+...+a_{ts}k_{s} = 0\\ \end{matrix}\right.
⎩
⎨
⎧a11k1+a12k2+...+a1sks=0⋯at1k1+at2k2+...+atsks=0
由于,
s
>
t
s>t
s>t(未知量
k
i
k_i
ki的个数比方程个数多),所以存在非零解(存在
k
i
k_i
ki不全为零的解),所以
α
1
,
⋯
,
α
s
\alpha_1,\cdots,\alpha_s
α1,⋯,αs线性无关,这于已知条件矛盾,从而
s
≤
t
s\le t
s≤t.