线性代数|极大线性无关组的向量个数是相同的

重点:文末有原文PDF下载链接!

定理的描述

例题:证明不同的极大线性无关组的向量个数是相等的

Proof:设 A = ( α 1 , ⋯   , α s ) , B = ( β 1 , ⋯   , β t ) A = (\alpha_1,\cdots,\alpha_s),B=(\beta_1,\cdots,\beta_t) A=(α1,,αs),B=(β1,,βt)是C的两个不同的极大线性无关组.所以
α 1 , ⋯   , α s ; β 1 , ⋯   , β t \alpha_1,\cdots,\alpha_s;\beta_1,\cdots,\beta_t α1,,αs;β1,,βt
均线性无关. 一方面,因为向量组 A A A可以由向量组 B B B线性表示,所以有
s ≤ t s \le t st
另一方面,因为向量组 B B B可以由向量组 A A A线性表示,所以有
t ≤ s t \le s ts
综上, t = s t=s t=s. 即证命题.

一个补充定理

note: 这里的 ≤ \le 是必然的,下面给出证明:
假设 s > t s>t s>t,且有已知因为向量组 A A A可以由向量组 B B B线性表示. 于是
α i = a i 1 β 1 + ⋯ + a i t β t \alpha_i = a_{i1}\beta_{1} + \cdots + a_{it}\beta_{t} αi=ai1β1++aitβt
考虑线性组合:
k 1 α 1 + ⋯ + k s α s = 0 k_{1}\alpha_{1} + \cdots + k_{s}\alpha_{s} = 0 k1α1++ksαs=0

k 1 ( a 11 β 1 + ⋯ + a 1 t β t ) + ⋯ + k s ( a s 1 β 1 + ⋯ + a s t β t ) = 0 k_{1}(a_{11}\beta_{1} + \cdots + a_{1t}\beta_{t}) + \cdots + k_{s}(a_{s1}\beta_{1} + \cdots + a_{st}\beta_{t}) = 0 k1(a11β1++a1tβt)++ks(as1β1++astβt)=0
由此,不难得到:
( a 11 k 1 + a 12 k 2 + . . . + a 1 s k s ) β 1 + ⋯ + ( a t 1 k 1 + a t 2 k 2 + . . . + a t s k s ) β t = 0 (a_{11}k_{1}+a_{12}k_{2}+...+a_{1s}k_{s})\beta_{1} + \cdots + (a_{t1}k_{1}+a_{t2}k_{2}+...+a_{ts}k_{s})\beta_{t} = 0 (a11k1+a12k2+...+a1sks)β1++(at1k1+at2k2+...+atsks)βt=0
考虑系数方程组
{ a 11 k 1 + a 12 k 2 + . . . + a 1 s k s = 0 ⋯ a t 1 k 1 + a t 2 k 2 + . . . + a t s k s = 0 \left\{\begin{matrix} a_{11}k_{1}+a_{12}k_{2}+...+a_{1s}k_{s} = 0\\ \cdots\\ a_{t1}k_{1}+a_{t2}k_{2}+...+a_{ts}k_{s} = 0\\ \end{matrix}\right. a11k1+a12k2+...+a1sks=0at1k1+at2k2+...+atsks=0
由于, s > t s>t s>t(未知量 k i k_i ki的个数比方程个数多),所以存在非零解(存在 k i k_i ki不全为零的解),所以 α 1 , ⋯   , α s \alpha_1,\cdots,\alpha_s α1,,αs线性无关,这于已知条件矛盾,从而 s ≤ t s\le t st.


【原文PDF下载链接(点我)】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YoonJun

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值