(邱维声)高等代数课程笔记:极大线性无关组,向量组的秩

极大线性无关组,向量组的秩

\quad 一般地,设 V V V 是数域 K K K 上的一个线性空间, α 1 , α 2 , ⋯   , α s ∈ V \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{s} \in V α1,α2,,αsV,则

W : = { k 1 ⋅ α 1 + ⋯ + k s ⋅ α s ∣ k 1 , ⋯   , k s ∈ K } W:=\{k_{1}\cdot \boldsymbol{\alpha}_{1} + \cdots + k_{s}\cdot \boldsymbol{\alpha}_{s}\mid k_{1},\cdots,k_{s}\in K\} W:={k1α1++ksαsk1,,ksK}

是由向量组 α 1 , α 2 , ⋯   , α s \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{s} α1,α2,,αs 生成的子空间。

\quad 显然,对于 ∀   β ∈ W \forall ~ \boldsymbol{\beta} \in W  βW β \boldsymbol{\beta} β 可由向量组 α 1 , α 2 , ⋯   , α s \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{s} α1,α2,,αs 线性表出。但是,由 上一节 的内容可知,当向量组 α 1 , α 2 , ⋯   , α s \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{s} α1,α2,,αs 线性相关时, β \boldsymbol{\beta} β 的表出方式并不唯一。

\quad 表出方式不唯一,就很麻烦!

\quad 为了消除这种“不确定性”,下面引入极大线性无关组的概念。先说明一下思路:我们期望能从向量组 α 1 , α 2 , ⋯   , α s \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{s} α1,α2,,αs 中,找个一个部分组,使得对于 ∀   β ∈ W \forall ~ \boldsymbol{\beta} \in W  βW,都可由这个部分组唯一地线性表出。

定义 1. 极大线性无关组:向量组 α 1 , α 2 , ⋯   , α s \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{s} α1,α2,,αs 的一个部分组,如果满足:

(1)这个部分组本身线性无关;

(2)从向量组的其余向量(如果还有的话)中任取一个添加进来,得到的新的部分组线性相关,

则称这个部分组为向量组 α 1 , α 2 , ⋯   , α s \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{s} α1,α2,,αs 的一个 极大线性无关组

例 1 π \pi π 是几何空间的一个过原点的平面中,向量 a ⃗ , b ⃗ , c ⃗ , d ⃗ ∈ π \vec{a},\vec{b},\vec{c},\vec{d} \in \pi a ,b ,c ,d π 互不共线。

\quad 容易验证, { a ⃗ , b ⃗ } , { a ⃗ , c ⃗ } , { b ⃗ , c ⃗ } , ⋯ \{\vec{a},\vec{b}\},\{\vec{a},\vec{c}\},\{\vec{b},\vec{c}\},\cdots {a ,b },{a ,c },{b ,c }, 都是向量组 a ⃗ , b ⃗ , c ⃗ , d ⃗ \vec{a},\vec{b},\vec{c},\vec{d} a ,b ,c ,d 的极大线性无关组。

\quad 由此可见,一个向量组的极大线性无关组可能不止一个。

#

\quad 既然,向量组的极大线性无关组的个数不止一个,那我们就要试着在“动” 中寻“静”,在“变量”中寻找“常量”!这就是后面将要介绍的“秩”。

定义 2. 向量组的表出与等价:若向量组 α 1 , α 2 , ⋯   , α r \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{r} α1,α2,,αr 中的任一向量可由向量组 β 1 , β 2 , ⋯   , β s \boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{s} β1,β2,,βs 线性表出,则称向量组 α 1 , α 2 , ⋯   , α r \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{r} α1,α2,,αr 可由向量组 β 1 , β 2 , ⋯   , β s \boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{s} β1,β2,,βs 线性表出

\quad 若向量组 α 1 , α 2 , ⋯   , α r \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{r} α1,α2,,αr 与向量组 β 1 , β 2 , ⋯   , β s \boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{s} β1,β2,,βs 可以互相线性表出,则称向量组 α 1 , α 2 , ⋯   , α r \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{r} α1,α2,,αr 与向量组 β 1 , β 2 , ⋯   , β s \boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{s} β1,β2,,βs 等价。记作:

{ α 1 , α 2 , ⋯   , α r } ≅ { β 1 , β 2 , ⋯   , β s } . \{\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{r}\} \cong \{\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{s}\}. {α1,α2,,αr}{β1,β2,,βs}.


定理 1. 等价的性质

( i ) (i) (i)反身性)任一向量组 α 1 , α 2 , ⋯   , α r \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{r} α1,α2,,αr 都与其自身等价。即:

{ α 1 , α 2 , ⋯   , α r } ≅ { α 1 , α 2 , ⋯   , α r } \{\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{r}\} \cong \{\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{r}\} {α1,α2,,αr}{α1,α2,,αr}

( i i ) (ii) (ii)对称性)若向量组 α 1 , α 2 , ⋯   , α r \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{r} α1,α2,,αr 与向量组 β 1 , β 2 , ⋯   , β s \boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{s} β1,β2,,βs 等价,则向量组 β 1 , β 2 , ⋯   , β s \boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{s} β1,β2,,βs 也与向量组 α 1 , α 2 , ⋯   , α r \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{r} α1,α2,,αr 等价。即:

( { α 1 , α 2 , ⋯   , α r } ≅ { β 1 , β 2 , ⋯   , β s } ) ⟺ ( { β 1 , β 2 , ⋯   , β s } ≅ { α 1 , α 2 , ⋯   , α r } ) \left(\{\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{r}\} \cong \{\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{s}\}\right)\Longleftrightarrow \left(\{\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{s}\} \cong \{\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{r}\} \right) ({α1,α2,,αr}{β1,β2,,βs})({β1,β2,,βs}{α1,α2,,αr})

( i i i ) (iii) (iii)传递性)若向量组 α 1 , α 2 , ⋯   , α r \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{r} α1,α2,,αr 与向量组 β 1 , β 2 , ⋯   , β s \boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{s} β1,β2,,βs 等价,向量组 β 1 , β 2 , ⋯   , β s \boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{s} β1,β2,,βs 与向量组 γ 1 , γ 2 , ⋯   , γ t \boldsymbol{\gamma}_{1},\boldsymbol{\gamma}_{2},\cdots,\boldsymbol{\gamma}_{t} γ1,γ2,,γt 等价,则向量组 α 1 , α 2 , ⋯   , α r \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{r} α1,α2,,αr 与向量组 γ 1 , γ 2 , ⋯   , γ t \boldsymbol{\gamma}_{1},\boldsymbol{\gamma}_{2},\cdots,\boldsymbol{\gamma}_{t} γ1,γ2,,γt 等价。

:显然,两个向量组要么等价,要么不等价,二者只居其一,且必居其一。因此,等价是一种关系。


\quad 下面,来探讨一下极大线性无关组的性质。

性质 1:向量组与其任一个极大线性无关组等价。

证明:按照定义,证明向量组与其部分组可以互相线性表出即可。

\quad 一般地,不妨设向量组 α 1 , α 2 , ⋯   , α s \boldsymbol{\alpha}_{1},\boldsymbol{\alpha }_{2},\cdots,\boldsymbol{\alpha}_{s} α1,α2,,αs 的一个极大线性无关组为 α 1 , α 2 , ⋯   , α m \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{m} α1,α2,,αm m ≤ s m \le s ms.

\quad 显然,对于任意的 1 ≤ j ≤ m 1\le j \le m 1jm,成立

α j = 0 ⋅ α 1 + ⋯ + 0 ⋅ α j − 1 + 1 ⋅ α j + 0 ⋅ α j + 1 + ⋯ + 0 ⋅ α s . \boldsymbol{\alpha}_{j} = 0 \cdot \boldsymbol{\alpha}_{1} + \cdots + 0 \cdot \boldsymbol{\alpha}_{j-1} + 1\cdot \boldsymbol{\alpha}_{j} + 0 \cdot \boldsymbol{\alpha}_{j+1} + \cdots + 0 \cdot \boldsymbol{\alpha}_{s}. αj=0α1++0αj1+1αj+0αj+1++0αs.

即向量组 α 1 , α 2 , ⋯   , α m \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{m} α1,α2,,αm 可由向量组 α 1 , α 2 , ⋯   , α s \boldsymbol{\alpha}_{1},\boldsymbol{\alpha }_{2},\cdots,\boldsymbol{\alpha}_{s} α1,α2,,αs 线性表出。

\quad 下面证明:向量组 α 1 , α 2 , ⋯   , α s \boldsymbol{\alpha}_{1},\boldsymbol{\alpha }_{2},\cdots,\boldsymbol{\alpha}_{s} α1,α2,,αs 可由其部分组 α 1 , α 2 , ⋯   , α m \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{m} α1,α2,,αm 线性表出。

\quad 一方面,对于任意的 α i \boldsymbol{\alpha}_{i} αi 1 ≤ i ≤ m 1 \le i \le m 1im),显然 α i \boldsymbol{\alpha}_{i} αi 可由向量组 α 1 , α 2 , ⋯   , α m \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{m} α1,α2,,αm 线性表出。

\quad 另一方面,对于任意的 α i \boldsymbol{\alpha}_{i} αi m + 1 ≤ i ≤ s m+1 \le i \le s m+1is),由于向量组 α 1 , α 2 , ⋯   , α m \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{m} α1,α2,,αm 是原向量组的一个极大线性无关组,因此新的向量组 α 1 , α 2 , ⋯   , α m , α i \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{m},\boldsymbol{\alpha}_{i} α1,α2,,αm,αi 一定线性相关,再由于 α 1 , α 2 , ⋯   , α m \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{m} α1,α2,,αm 线性无关,根据 上一节 的结论, α i \boldsymbol{\alpha}_{i} αi 必能被向量组 α 1 , α 2 , ⋯   , α m \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{m} α1,α2,,αm 线性表出。

\quad 综上,向量组 α 1 , α 2 , ⋯   , α s \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{s} α1,α2,,αs 与其极大线性无关组 α 1 , α 2 , ⋯   , α m \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{m} α1,α2,,αm 可以互相线性表出,即等价。

#

性质 2:向量组的任意两个极大线性无关组等价。

证明:

\quad 由等价的传递性,结论是显然的。

#

\quad 观察向量组的极大线性无关组,它们之间似乎有些共同的特点。容易猜测:向量组的任一个极大线性无关组所含向量的个数相同。下面,我们来证实这一猜测。


引理 1:设向量组 β 1 , β 2 , ⋯   , β r \boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{r} β1,β2,,βr 可由向量组 α 1 , α 2 , ⋯   , α s \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{s} α1,α2,,αs 线性表出,若 r > s r>s r>s,则向量组 β 1 , β 2 , ⋯   , β r \boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{r} β1,β2,,βr 线性相关。

证明:

\quad 向量组 β 1 , β 2 , ⋯   , β r \boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{r} β1,β2,,βr 可由向量组 α 1 , α 2 , ⋯   , α s \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{s} α1,α2,,αs 线性表出,于是存在一系列的 a i j a_{ij} aij 1 ≤ i ≤ r , 1 ≤ j ≤ s 1\le i \le r,1\le j \le s 1ir,1js)使得

{ β 1 = a 11 α 1 + a 21 α 2 + ⋯ + a s 1 α s β 2 = a 12 α 1 + a 22 α 2 + ⋯ + a s 2 α s ⋯ ⋯ β r = a 1 r α 1 + a 2 r α 2 + ⋯ + a s r α s \begin{cases} \boldsymbol{\beta}_{1} = a_{11}\boldsymbol{\alpha}_{1} + a_{21}\boldsymbol{\alpha}_{2} + \cdots + a_{s1} \boldsymbol{\alpha}_{s}\\ \boldsymbol{\beta}_{2} = a_{12}\boldsymbol{\alpha}_{1} + a_{22}\boldsymbol{\alpha}_{2} + \cdots + a_{s2} \boldsymbol{\alpha}_{s}\\ \cdots \cdots\\ \boldsymbol{\beta}_{r} = a_{1r}\boldsymbol{\alpha}_{1} + a_{2r}\boldsymbol{\alpha}_{2} + \cdots + a_{sr} \boldsymbol{\alpha}_{s} \end{cases} β1=a11α1+a21α2++as1αsβ2=a12α1+a22α2++as2αs⋯⋯βr=a1rα1+a2rα2++asrαs

\quad 要证明向量组 β 1 , β 2 , ⋯   , β r \boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{r} β1,β2,,βr 线性相关,即要证明存在 r r r 个不全为零的数 x 1 , x 2 , ⋯   , x r x_{1},x_{2},\cdots,x_{r} x1,x2,,xr 使得

x 1 β 1 + x 2 β 2 + ⋯ + x r β r = 0 . x_{1} \boldsymbol{\beta}_{1} + x_{2}\boldsymbol{\beta}_{2} + \cdots + x_{r}\boldsymbol{\beta}_{r} = \boldsymbol{0}. x1β1+x2β2++xrβr=0.

将前面的 r r r 个等式代入,即有

x 1 ( a 11 α 1 + a 21 α 2 + ⋯ + a s 1 α s ) + x 2 ( a 12 α 1 + a 22 α 2 + ⋯ + a s 2 α s ) + ⋯ + x r ( a 1 r α 1 + a 2 r α 2 + ⋯ + a s r α s ) = 0 . x_{1}(a_{11}\boldsymbol{\alpha}_{1} + a_{21}\boldsymbol{\alpha}_{2} + \cdots + a_{s1} \boldsymbol{\alpha}_{s})+ x_{2} (a_{12}\boldsymbol{\alpha}_{1} + a_{22}\boldsymbol{\alpha}_{2} + \cdots + a_{s2} \boldsymbol{\alpha}_{s}) + \cdots + x_{r}(a_{1r}\boldsymbol{\alpha}_{1} + a_{2r}\boldsymbol{\alpha}_{2} + \cdots + a_{sr} \boldsymbol{\alpha}_{s}) = \boldsymbol{0}. x1(a11α1+a21α2++as1αs)+x2(a12α1+a22α2++as2αs)++xr(a1rα1+a2rα2++asrαs)=0.

整理一下,即有

( a 11 x 1 + a 12 x 2 + ⋯ + a 1 r x r ) α 1 + ( a 21 x 1 + a 22 x 2 + ⋯ + a 2 r x r ) α 2 + ⋯ + ( a s 1 x 1 + a s 2 x 2 + ⋯ + a s r x r ) α s = 0 (a_{11}x_{1}+a_{12}x_{2}+\cdots + a_{1r}x_{r})\boldsymbol{\alpha}_{1} + (a_{21}x_{1}+a_{22}x_{2}+\cdots + a_{2r}x_{r})\boldsymbol{\alpha}_{2} + \cdots + (a_{s1}x_{1}+a_{s2}x_{2}+\cdots +a_{sr}x_{r})\boldsymbol{\alpha}_{s} = \boldsymbol{0} (a11x1+a12x2++a1rxr)α1+(a21x1+a22x2++a2rxr)α2++(as1x1+as2x2++asrxr)αs=0

显然,上式各项系数为零时,等式是成立的,为此,我们考虑方程组

{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 r x r = 0 a 21 x 1 + a 22 x 2 + ⋯ + a 2 r x r = 0 ⋯ ⋯ a s 1 x 1 + a s 2 x 2 + ⋯ + a s r x r = 0 \begin{cases} a_{11}x_{1}+a_{12}x_{2}+\cdots + a_{1r}x_{r} = 0\\ a_{21}x_{1}+a_{22}x_{2}+\cdots + a_{2r}x_{r} = 0\\ \cdots \cdots\\ a_{s1}x_{1}+a_{s2}x_{2}+\cdots +a_{sr}x_{r} = 0 \end{cases} a11x1+a12x2++a1rxr=0a21x1+a22x2++a2rxr=0⋯⋯as1x1+as2x2++asrxr=0

\quad 由于 r > s r>s r>s,因此上面的齐次线性方程组必定有非零解。

\quad 任取其一非零解 ( k 1 , k 2 , ⋯   , k r ) (k_{1},k_{2},\cdots,k_{r}) (k1,k2,,kr),代入上述方程组,显然有

k 1 β 1 + k 2 β 2 + ⋯ + k r β r = 0 . k_{1} \boldsymbol{\beta}_{1} + k_{2} \boldsymbol{\beta}_{2} + \cdots + k_{r} \boldsymbol{\beta}_{r} = \boldsymbol{0}. k1β1+k2β2++krβr=0.

从而向量组 β 1 , β 2 , ⋯   , β r \boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{r} β1,β2,,βr 线性相关。

#

推论 1:设向量组 β 1 , β 2 , ⋯   , β s \boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{s} β1,β2,,βs 可由向量组 α 1 , α 2 , ⋯   , α r \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{r} α1,α2,,αr 线性表出,若 β 1 , β 2 , ⋯   , β s \boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{s} β1,β2,,βs 线性无关,则 s ≤ r s \le r sr

证明:

\quad 显然是 引理 1 的直接推论。

#

引理 1 的作用是明显的,它从线性表出这个范畴中推出了向量组个数之间的关系。

推论 2:等价的线性无关的两个向量组所含的向量的个数相等。

推论 3:向量组的任意两个极大线性无关组所含向量的个数相等。

定义 3. 向量组的秩:向量组的任一个极大线性无关组所含向量的个数称为

规定:只含有零向量的向量组的秩为 0 0 0,记作 r a n k   { 0 } = 0 rank ~ \{\boldsymbol{0}\} = 0 rank {0}=0.


最后,做一些总结。

命题 1:向量组 α 1 , α 2 , ⋯   , α s \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{s} α1,α2,,αs 线性无关 ⟺ \Longleftrightarrow r a n k   { α 1 , α 2 , ⋯   , α s } = s rank ~ \{\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{s}\}= s rank {α1,α2,,αs}=s

命题 2:若向量组 ( I ) (I) (I) 可由向量组 ( I I ) (II) (II) 线性表出,则 r a n k   ( I ) ≤ r a n k   ( I I ) rank ~ {(I)} \le rank ~ {(II)} rank (I)rank (II)

命题 3:等价的向量组具有相同的秩。


参考

  1. 邱维声. 高等代数课程. 哔哩哔哩.

  2. 邱维声. 高等代数——大学高等代数课程创新教材(上册),北京:清华大学出版社,2010.06.

  3. 邱维声. 高等代数——大学高等代数课程创新教材(下册),北京:清华大学出版社,2010.10.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值