python numpy 的合并newaxis,ertical stack,horizontal stack,concatenate

#每天一点点#
python numpy 的合并

import numpy as np

A = np.array([1,1,1]) #A.shape (3,) 
B = np.array([2,2,2])
C = np.vstack((A,B)) # vertical  stack上下合并,C.shape (2, 3) 是2行3列的矩阵
D = np.hstack((A,B)) #horizontal stack 左右合并,D.shape  (6,)
print(D)
print(A.shape,C.shape,D.shape)

#把横向序列变成纵向矩阵
a = A[:,np.newaxis]
print(a)


# 
A1 = np.array([1,1,1])[:,np.newaxis] #将横向序列变成纵向矩阵
B1 = np.array([2,2,2])[:,np.newaxis] #将横向序列变成纵向矩阵
C1 = np.vstack((A1,B1,B1)) #上下合并,可多个
D1 = np.hstack((A1,B1,A1)) #左右合并,可多个
E1 = np.concatenate((A1,B1,B1),axis = 0) #通过axis定义是行或列合并
F1 = np.concatenate((A1,B1,A1),axis = 1) #按照行合并,即左右合并
`numpy.concatenate`和`numpy.stack`都可以用于将多个数组合并成一个更大的数组,但它们有一些区别。 `numpy.concatenate`函数用于在现有的轴上连接数组。它需要指定需要连接的数组以及连接的轴。连接的轴是现有的轴,连接后的数组的维数不会增加。例如,如果你有两个二维数组,你可以在它们的行或列上连接它们。 `numpy.stack`函数用于在新轴上堆叠数组。它需要指定需要堆叠的数组以及新轴的位置。新轴的位置可以是0(最前面),1(中间)或-1(最后面)。堆叠后的数组的维数会增加。例如,如果你有两个一维数组,你可以在它们的第0个轴上堆叠它们,得到一个二维数组。 下面是一个简单的示例,演示如何使用`numpy.concatenate`和`numpy.stack`函数: ```python import numpy as np # 创建两个二维数组 a = np.array([[1, 2], [3, 4]]) b = np.array([[5, 6], [7, 8]]) # 使用 concatenate 在行上连接两个数组 c = np.concatenate((a, b), axis=0) print(c) # 使用 concatenate 在列上连接两个数组 d = np.concatenate((a, b), axis=1) print(d) # 使用 stack 在新轴上堆叠两个数组 e = np.stack((a, b), axis=0) print(e) ``` 输出结果如下: ``` # 使用 concatenate 在行上连接两个数组 [[1 2] [3 4] [5 6] [7 8]] # 使用 concatenate 在列上连接两个数组 [[1 2 5 6] [3 4 7 8]] # 使用 stack 在新轴上堆叠两个数组 [[[1 2] [3 4]] [[5 6] [7 8]]] ``` 在这个例子中,我们创建了两个二维数组a和b。使用`numpy.concatenate`函数,我们将它们沿着行和列连接起来。使用`numpy.stack`函数,我们将它们沿着新轴堆叠起来。注意,使用`numpy.stack`函数,我们得到了一个三维数组。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值