矩阵特征值和特征向量求解——特征值分解(EVD)

特征分解(Eigen decomposition),又称谱分解(Spectral decomposition)是将矩阵分解为由其特征值和特征向量表示的矩阵之积的方法。
只有对可对角化矩阵才可以施以特征分解。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在C#中求协方差矩阵特征值特征向量可以使用以下代码: ```csharp double[,] data = new double[,] { {1, 2}, {3, 4}, {5, 6}, {7, 8}, }; int n = data.GetLength(1); // 获取数据的列数 double[] means = new double[n]; // 存储每列的均值 // 计算每列的均值 for (int j = 0; j < n; j++) { double sum = 0; for (int i = 0; i < data.GetLength(0); i++) { sum += data[i, j]; } means[j] = sum / data.GetLength(0); } double[,] cov = new double[n, n]; // 存储协方差矩阵 // 计算协方差矩阵 for (int i = 0; i < n; i++) { for (int j = i; j < n; j++) { double sum = 0; for (int k = 0; k < data.GetLength(0); k++) { sum += (data[k, i] - means[i]) * (data[k, j] - means[j]); } cov[i, j] = cov[j, i] = sum / (data.GetLength(0) - 1); } } // 使用MathNet.Numerics库计算特征值特征向量 MathNet.Numerics.LinearAlgebra.Matrix<double> m = MathNet.Numerics.LinearAlgebra.Matrix<double>.Build.DenseOfArray(cov); MathNet.Numerics.LinearAlgebra.Eigenvalues.SymmetricEigenvalueDecomposition<double> eig = m.Evd(); double[] eigenvalues = eig.EigenValues.ToArray(); // 特征值数组 double[,] eigenvectors = eig.EigenVectors.ToArray(); // 特征向量矩阵 ``` 其中,`data`数组是输入的数据,每行表示一个样本,每列表示一个特征;`means`数组存储每列的均值;`cov`数组存储协方差矩阵;`eigenvalues`数组存储特征值,`eigenvectors`数组存储特征向量矩阵。在这里我们使用了MathNet.Numerics库来计算特征值特征向量,需要先通过NuGet安装该库。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值