矩阵的特征值与特征向量 求解

本文介绍了矩阵的特征值和特征向量的概念,阐述了如何求解矩阵的特征值和特征向量,通过举例说明了计算过程,并证明了相关性质。内容涵盖特征值的定义、特征方程、特征矩阵以及特征值与特征向量的关系。
摘要由CSDN通过智能技术生成

矩阵特征值

定义1:设A是n阶矩阵,如果数和n维非零列向量使关系式成立,则称这样的数成为方阵A的特征值,非零向量成为A对应于特征值的特征向量。

说明:1、特征向量,特征值问题是对方阵而言的。

   2、n阶方阵A的特征值,就是使齐次线性方程组有非零解的值,即满足方程都是矩阵A的特征值。

   3、

 

定义2:A为n阶矩阵,称为A的特征矩阵,其行列式的n次多项式,称为A的特征多项式,称为A的特征方程。

说明:1、由定义得,是A的特征值,等价于是其特征方程的根,因此又称

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值