来源 | 学生范、PaperRSS
编辑 | 学术君
在大学扩招之后,我国每年的大学毕业生规模已经突破了1000万,而且还呈现出逐年增长的趋势,在如此激烈的就业压力下,很多大四本科生不得不选择考研的路子,无论是为了进一步深造增强竞争力,还是为了躲避就业压力,研究生扩招也已成为不争的事实。
考研本身是一个双向选择的过程,考生可以选择导师,导师也可以选择考生;彼此间的基础关系更像是工作关系,双方各司其职,学生完成既定的课程及科研,而导师则负责授课和科研指导,在此基础上彼此独立且平等。但这是理想化的一种情况,毕竟由于种种原因,考生和导师之间并没有太大的了解,比如有的考生是调剂到导师那里的,有的导师要带数十个学生,精力上难以顾及每一名学生,所以最终有很多尴尬的事情发生。其次导师在带自己的研究生时,还有要负责的专业基础课,精力是需要一分为二的。
近期网络上一张研究生微信群的对话截图引起了网友们的广泛关注:当事人是哈尔滨工程大学航天与建筑工程学院负责土木工程学科的李宏亮教授,将他指导的63名研究生的微信群就地解散了(这应该是专业基础课,是他的学生,而不是他的研究生,毕竟一名导师没有如此经历),而且还表示“和你们没有感情,永远不想和你们打交道,也不要找我问学科问题,江湖不见”,这是什么仇什么怨啊?
其实原因很简单:就是李宏亮教授刚批完所指导的63名学生的作业后,发现绝大多数人没答对静力学的作业,80%不了解约束类型,没人认识他一再强调的动力学方程,绝大多部分还要靠他施舍20分才能及格,能力和水平大打折扣;李宏亮教授感觉自己一学期的辛苦付出得不到应有的学业回报,所指导的研究生并没有尊重学业,也没有尊重他的付出,所以他才有如此恨铁不成钢的行为,或许这是李宏亮教授希望通过这个行为点醒63名学生,是他最后的一丝倔强吧。
有力学授课经验的老师应该会知道,约束类型是相对简单的知识,算是一门基础,但研究生扩招以后,学生的专业技能基础整体变弱了,越来越多的学生缺乏对知识技能的敬畏心,缺乏学习动力,毕竟能考研上岸的同学,他们的自制力、忍受力应该都远高于常人,肯定也算是学霸级别的存在了,所以研究生宽进严出是势在必行了。
但我们不能否认,李宏亮教授是一名好老师,这种恨铁不成钢的表现,让多数人都理解他的心情,但把群解散了,也算是“杀敌一千自损八百”的行为了。大家觉得是学生的“力学”不行了?还是“学习的目的”不行了呢?
网友留言:
1 这是我上大学的老师,讲课很好,又有幽默感。
2 老师专业水平可能好,但也要会教才行。你看,他还有错别字:作业要“做对”,不是“作对”。
3 现在的大学生,上了大学就是退休状态
4 我突然发现我特能理解老师的那种愤怒感,我小时候学习就特别差,班级里学生又多,就我们这么十来个差生,老师也不可能专门给我们补课,所以一群人在一直拖后腿,一节课没听懂,后边的课就节节课听不懂,得亏九年义务教育,要不然就凭我这样的打死都考不上初中
5 约束类型很简单啊,铰支座约束,和固定约束,大概齐只有这两大类这个概念性的东西记起来最多几分钟,学老师说的那些内容最多也不会超过2个小时,这些研究生真的很过分
6 我觉得这个老师完全没有必要这么做,如果学科要求严格完全不施舍分数即可,学生总是要修够学分的,让不好好学习的挂科就可以了啊。整体来说这个老师专业满分,情商0分,他这个学科是专业必修科的话自然不敢怠慢,总要毕业的吧,如果是选修课的话,挂了可以选修别的嘛,学分够就可以,上学的时候老师严格要求的多了去了,挂了就要重修或者补考,为啥要开施舍分数的口子呢?
本文来源:学生范、PaperRSS
转载本文请联系原作者获取授权,同时请注明本文来源。
本文仅做学术分享,如有侵权,请联系删文。
3D视觉精品课程推荐:
2.面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)
3.彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进
4.国内首个面向工业级实战的点云处理课程
5.激光-视觉-IMU-GPS融合SLAM算法梳理和代码讲解
6.彻底搞懂视觉-惯性SLAM:基于VINS-Fusion正式开课啦
7.彻底搞懂基于LOAM框架的3D激光SLAM: 源码剖析到算法优化
8.彻底剖析室内、室外激光SLAM关键算法原理、代码和实战(cartographer+LOAM +LIO-SAM)
重磅!3DCVer-学术论文写作投稿 交流群已成立
扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。
同时也可申请加入我们的细分方向交流群,目前主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。
一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。
▲长按加微信群或投稿
▲长按关注公众号
3D视觉从入门到精通知识星球:针对3D视觉领域的视频课程(三维重建系列、三维点云系列、结构光系列、手眼标定、相机标定、激光/视觉SLAM、自动驾驶等)、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答五个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近4000星球成员为创造更好的AI世界共同进步,知识星球入口:
学习3D视觉核心技术,扫描查看介绍,3天内无条件退款
圈里有高质量教程资料、答疑解惑、助你高效解决问题
觉得有用,麻烦给个赞和在看~