机械臂的轨迹规划,路径规划,运动规划有什么区别呢?

来源:古月居

点击进入—>3D视觉工坊学习交流群

先解决定义问题。名词定义不重要,但是我们有必要了解它们可能涉及机器人研究中的哪些工作。

10cf8ee99b0231d3c0cf981b13f5f517.png

再解决这些工作之间的关系问题。

机器人底层控制最终需要的就是一堆电流控制指令,所以,不管是什么任务,最终都需要翻译成每个电机的控制指令。

但是,由于不同任务的硬件平台、任务需求、约束不同,所以,可能会不同层次地将任务进行分解。

对于最简单的任务,只要求机器人从A运动到B,中间避开障碍物,而不用考虑运动时间等问题。

这时候,基本上规划部分只需要进行路径规划即可:规划器输出一条几何路径θ(s),发送给机器人控制器,机器人控制器自行进行路径点之间的轨迹插补(如T型速度曲线、样条插值等)。

计算得到θ(t),并通过PID 之类的闭环控制算法转换电机控制指令,控制机器人完成任务。例如,之前的一个回答,要求机器人运动的时候避开相机视野区域,就是这样的问题:

  • https://www.zhihu.com/question/373986440/answer/1037013860

  • https://www.zhihu.com/zvideo/1316438365613236224

另一方面,不同任务,即使在其空间路径相同的情况下,也可能对轨迹有不同的要求

例如,有些任务要求机器人的运动时间最短,有些任务要求机器人的运动节拍固定,有些任务要求机器人的末端匀速运动。

甚至是,从运动平稳性考虑,需要规划出速度、加速度、甚至是加速度连续的轨迹。对于这类任务,仅做路径规划就无法满足要求,往往需要路径规划与轨迹规划相结合。

对于这类任务,可以先进行路径规划,获得满足任务的空间路径,之后再进行轨迹插补,获得需要的轨迹后,通过实时通讯的方式,将轨迹发送给机器人控制器,通过闭环控制,得到电机控制指令。

下面的视频是相同的路径,但是不同的轨迹规划结果。分别是时间最优、节拍固定和末端匀速的轨迹:

《不同约束下得到的不同轨迹》

https://www.zhihu.com/zvideo/1316437536278429696

但是,如果机器人的运动轨迹需要满足某种动力学约束,那么,往往需要规划器直接计算出符合约束的轨迹,而不是分为路径规划和轨迹插补两部分。

对于某些任务,规划的时候,环境的状态不完全可观或者说环境可能发生变化。

这时候,需要的是某种运动策略,输入当前的环境与机器人状态 s,输出当前时刻的控制指令 u。

很多强化学习的工作,其实就是在做这类工作,通过 DRL 去学习不同状态下的控制策略。

所有上面这些场景,都可以是运动规划的范畴。

本文转载自知乎:

https://www.zhihu.com/answer/1601792996

本文仅做学术分享,如有侵权,请联系删文。

点击进入—>3D视觉工坊学习交流群

干货下载与学习

后台回复:巴塞罗自治大学课件,即可下载国外大学沉淀数年3D Vison精品课件

后台回复:计算机视觉书籍,即可下载3D视觉领域经典书籍pdf

后台回复:3D视觉课程,即可学习3D视觉领域精品课程

3D视觉工坊精品课程官网:3dcver.com

1.面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)
2.彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进
3.国内首个面向工业级实战的点云处理课程
4.激光-视觉-IMU-GPS融合SLAM算法梳理和代码讲解
5.彻底搞懂视觉-惯性SLAM:基于VINS-Fusion正式开课啦
6.彻底搞懂基于LOAM框架的3D激光SLAM: 源码剖析到算法优化
7.彻底剖析室内、室外激光SLAM关键算法原理、代码和实战(cartographer+LOAM +LIO-SAM)

8.从零搭建一套结构光3D重建系统[理论+源码+实践]

9.单目深度估计方法:算法梳理与代码实现

10.自动驾驶中的深度学习模型部署实战

11.相机模型与标定(单目+双目+鱼眼)

12.重磅!四旋翼飞行器:算法与实战

13.ROS2从入门到精通:理论与实战

14.国内首个3D缺陷检测教程:理论、源码与实战

15.基于Open3D的点云处理入门与实战教程

16.透彻理解视觉ORB-SLAM3:理论基础+代码解析+算法改进

重磅!粉丝学习交流群已成立

交流群主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、ORB-SLAM系列源码交流、深度估计、TOF、求职交流等方向。

扫描以下二维码,添加小助理微信(dddvisiona),一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

b2908256668632c078d4ea090ec92c2d.jpeg

▲长按加微信群或投稿,微信号:dddvisiona

3D视觉从入门到精通知识星球:针对3D视觉领域的视频课(三维重建系列、三维点云系列、结构光系列、手眼标定、相机标定、激光/视觉SLAM、自动驾驶等)源码分享、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答等进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,6000+星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看,3天内无条件退款

c93ebd29667096f9783a5d7aa2dd946f.jpeg

高质量教程资料、答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值