国内双目结构光相机,哪家强?

首先,我们对比下Gemini2 L与 Realsense D455的差异。

一 Gemini2 L外观展示

725def1eb1854ed763e947eb644b252f.jpeg
Gemini2 L
2b4bf96d91de4e930f7d70b2159dec2d.jpeg
左侧为realsense,右侧为Gemini2 L
9c63949a5bdaedf013ff59a6e2c22b3d.png
Gemini2 L产品实物图
316d411e42cbc51d4c7193aca30049bd.png
Gemini2 L整机结构组件爆炸图
4545cc72c07d3bacf0e2080ba1ad8ca4.png 7adfe2cf85258bfdc8839c099e268b00.png c2e75fa4c9c7396d71adeca384fff113.png
Realsense D455 产品示意图

我认为其中几个重要的术语描述表:

术语描述
IR Camera红外相机,或红外摄像头
LDMP/LDM激光模组,也称红外投影仪(IR projector)等,用于发射结构光图案
Depth Camera只包含深度成像模组及对外接口,其中深度成像模组一般由红外投影仪、红外相机以及深度计算处理器组成
PSProximity Sensor, 一种接近感应器,用于激光安全保护
LDP接近传感器(Proximity Sensor) ,用于激光安全保护以及测距功能
FoV视场角,用于描述相机观测给定场景的角度范围,主要有水平视场角(HFoV)、垂直视场角(V FoV)和对角线视场角(D FoV)三种

二 双目结构光模组成像基本原理

Gemini 2 系列是基于双目 3D 成像技术的深度相机,主要包括左红外相机(IR Left)、右红 外相机(IR Right)、一个激光投射模组(LDM)以及深度计算处理器(MX6600)。激光投射模组用 于向目标场景(Scene)投射结构光图案(散斑图案),左红外相机以及右红外相机分别采集目标的 左红外结构光图像以及右红外结构光的散斑图,深度计算处理器接收左红外结构光图像、右红外 结构光图像后执行深度计算算法并输出目标场景的深度图像

三 双目3D相机模组参数介绍

3.1 红外相机参数表

参数Gemini2 L
有效像素比1280 x 800
长宽比16:10
对焦方式定焦
快门类型global shutter
信号接口MIPI
水平FoV94°
垂直FoV68°
对角线FoV104°
FoV误差±3.0°

3.2 激光模组

激光模组(LDM),也称激光发射模组,由垂直腔面发射激光器阵列和光斑扩散器组成。通过在场景上投射静态红外图案以增加低质感场景的质感,提高了 3D 相机系统探测深度信息的能力。正常情况下,Gemini 2 系列激光模组符合 class 1 类激光安全性。

3.3 彩色相机

彩色相机参数表

参数Gemini2 L
有效像素比1280 x 800
长宽比16:10
格式MJPEG & YUYV
对焦方式定焦
快门类型global shutter
信号接口MIPI
水平FoV94°
垂直FoV68°
对角线FoV104°
FoV误差±3.0°

3.4 接近传感器(LDP)

Gemini 2 系列支持 LDP,LDP 对靠近物体进行检测,用于实现激光安全保护。

Gemini 2 L:LDP 保护标准为≤15cm。

LDP 功能测试方法如下:当挡板靠近 3D 相机时,系统将自动调暗乃至关闭激光以实现激光保护,此时IR图像亮度值将会降低,当亮度小于设定值,说明激光安全保护功能正常。当挡板去掉后激光应正常开启,IR图像会变亮,再次判断亮度值是否大于设定值。

四 题外话:双目基线对精度的影响

首先,Gemini2 L相比于Gemini2一个显著的变化,便是增大了两个IR Camera之间的基线。

我们先来看一下一本书中对于基线对精度的影响的分析(这里考考大家,有知道书名的,欢迎文章底部留言,答对了我们会赠送知识星球半价优惠券):

6a122c45ecc9daa5fb7f6f0bd8ac9a6a.jpeg 03c661672e59a514dc253bc4ee2e9580.jpeg a41974f9080a6c03a0e71501abb1bda6.jpeg

总结来说,也就是基线对测量精度是有影响的,但是也是非线性的。

参考文献: 

[1]奥比中光产品说明手册

—END—

高效学习3D视觉三部曲

第一步 加入行业交流群,保持技术的先进性

目前工坊已经建立了3D视觉方向多个社群,包括SLAM、工业3D视觉、自动驾驶方向,细分群包括:[工业方向]三维点云、结构光、机械臂、缺陷检测、三维测量、TOF、相机标定、综合群;[SLAM方向]多传感器融合、ORB-SLAM、激光SLAM、机器人导航、RTK|GPS|UWB等传感器交流群、SLAM综合讨论群;[自动驾驶方向]深度估计、Transformer、毫米波|激光雷达|视觉摄像头传感器讨论群、多传感器标定、自动驾驶综合群等。[三维重建方向]NeRF、colmap、OpenMVS等。除了这些,还有求职、硬件选型、视觉产品落地等交流群。大家可以添加小助理微信: dddvisiona,备注:加群+方向+学校|公司, 小助理会拉你入群。

85dc3ce82259bf4cfd54f50877784916.jpeg
添加小助理微信:cv3d007, 拉你入群
第二步 加入知识星球,问题及时得到解答

针对3D视觉领域的视频课程(三维重建、三维点云、结构光、手眼标定、相机标定、激光/视觉SLAM、自动驾驶等)、源码分享、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答等进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业、项目对接为一体的铁杆粉丝聚集区,6000+星球成员为创造更好的AI世界共同进步,知识星球入口:「3D视觉从入门到精通」

学习3D视觉核心技术,扫描查看,3天内无条件退款 fb2c8bb6614db98e2c02a5bd26aecd74.jpeg
高质量教程资料、答疑解惑、助你高效解决问题
第三步 系统学习3D视觉,对模块知识体系,深刻理解并运行

如果大家对3D视觉某一个细分方向想系统学习[从理论、代码到实战],推荐3D视觉精品课程学习网址:www.3dcver.com

基础课程:

[1]面向三维视觉算法的C++重要模块精讲:从零基础入门到进阶

[2]面向三维视觉的Linux嵌入式系统教程[理论+代码+实战]

[3]如何学习相机模型与标定?(代码+实战)

[4]ROS2从入门到精通:理论与实战

[5]彻底理解dToF雷达系统设计[理论+代码+实战]

工业3D视觉方向课程:

[1](第二期)从零搭建一套结构光3D重建系统[理论+源码+实践]

[2]保姆级线结构光(单目&双目)三维重建系统教程

[3]机械臂抓取从入门到实战课程(理论+源码)

[4]三维点云处理:算法与实战汇总

[5]彻底搞懂基于Open3D的点云处理教程!

[6]3D视觉缺陷检测教程:理论与实战!

SLAM方向课程:

[1]深度剖析面向机器人领域的3D激光SLAM技术原理、代码与实战

[1]彻底剖析激光-视觉-IMU-GPS融合SLAM算法:理论推导、代码讲解和实战

[2](第二期)彻底搞懂基于LOAM框架的3D激光SLAM:源码剖析到算法优化

[3]彻底搞懂视觉-惯性SLAM:VINS-Fusion原理精讲与源码剖析

[4]彻底剖析室内、室外激光SLAM关键算法和实战(cartographer+LOAM+LIO-SAM)

[5](第二期)ORB-SLAM3理论讲解与代码精析

视觉三维重建

[1]彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进)

自动驾驶方向课程:

[1] 深度剖析面向自动驾驶领域的车载传感器空间同步(标定)

[2] 国内首个面向自动驾驶目标检测领域的Transformer原理与实战课程

[3]单目深度估计方法:算法梳理与代码实现

[4]面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)

[5]如何将深度学习模型部署到实际工程中?(分类+检测+分割)

最后

1、3D视觉文章投稿作者招募

2、3D视觉课程(自动驾驶、SLAM和工业3D视觉)主讲老师招募

3、顶会论文分享与3D视觉传感器行业直播邀请

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值