如何轻松拿捏LIO-SAM?

本文介绍了LOAM的局限性及其改进方法,重点阐述了LIO-SAM的优势,包括特征检测、多传感器融合和回环检测。文章还提到针对LIO-SAM复杂理论和代码的课程设计,旨在帮助初学者理解和实现这一先进SLAM算法。

LOAM是目前为止激光里程计(LO)领域最经典最广泛使用的方法,堪称LO领域的baseline,至今仍在KITTI数据集上名列前茅。但是它存在诸多问题,比如:它直接存储全局体素地图而不是局部地图,从而很难执行回环检测以修正漂移;没有很好地使用IMU、GPS等测量融合进行位姿修正;并且体素地图的使用效率会随时间降低。

87e9f9d1c70106269768174c575e6006.png

后续有很多研究者提出了各种改进方法提高LOAM在不同场景下的性能,如FAST-LIO使用EKF整合LiDAR和IMU的测量;LeGO-LOAM引入地面分割和回环检测进一步提高UGV的定位和建图性能;但其中效果较好的当属LIO-SAM,LIO-SAM是一种紧耦合的激光-惯性里程计方法,LIO-SAM可以说是LO的理想框架,其继承了LOAM特征检测和ICP匹配的稳定性,实现了激光雷达-IMU-GPS的多传感器融合,引入了回环检测方法修正全局漂移,利用了多种方法提高了SLAM算法的精度。

8bf740c0b2200f9549c2a6c8b3c87232.png

但是LIO-SAM中涉及到很多内容和理论的推导,不仅包括LOAM中原有的特征检测特征匹配噪声去除等内容,还使用了因子图来组织整个系统,其代码中使用了GTSAM包进行建模;除此之外,由于其紧耦合的设计,还使用了IMU预积分的知识,这部分知识往往是复杂的,对数学公式的的推导要求较高

1ac035cb77bc076feb1767351fdc537d.png

虽然网上也有一些LIO-SAM的论文讲解,但大部分都是对论文的简单翻译;虽然也有一些视频教程,但知识体系比较零散,铺天盖地的讲解导致很多初学者不能很好的把握其中的关键;关于其代码的讲解更是寥寥无几,导致很多同学很难理解其代码架构,更别提自己动手书写。

ea79986a7d3e607b188b135067528fae.png

基于此,我们「3D视觉从入门到精通」知识星球特地增加了「如何轻松拿捏LIO-SAM?」系列视频课程希望通过这门课,大家能对LIO-SAM的理论和代码有一些清晰的认识,自己能够真正地理解其算法思路,并进一步学习到一些阅读其他相关论文或代码的方法

1.课程讲师

K.Fire,哈尔滨工业大学本科毕业保研至中国科学院大学攻读硕士,主要专注于3D激光SLAM、动态SLAM研究,CSDN资深博主,近4000粉丝量,热衷于知识分享。

2.课程大纲

第一章:绪论

  • LOAM系列算法介绍及比较

  • LIO-SAM优势及效果展示

第二章:预备知识

  • 矩阵基础

  • 三维刚体变换

  • 李群与李代数

  • 非线性优化

  • 拓展:卡尔曼滤波

第三章:LOAM论文及原理详解

  • LOAM论文带读

  • ICP算法原理与发展、SVD分解

  • LOAM代码速通、PCA算法

第四章:LeGO-LOAM、LIO-SAM论文及原理讲解

  • LeGO-LOAM原理讲解

  • LeGO-LOAM代码速通

  • LIO-SAM原理讲解

第四章:LIO-SAM代码详解

  • 前端-GTSAM、IMU预积分、位姿融合

  • 后端-点云配准、建图、回环检测

第五章:实战及总结

  • ROS系统简介及代码运行

  • 总结、未来工作

本课程(星球专属课)自2024年1月28日开课,每周更新一章

3.如何学习本门课程?

124b82969f259580bca623e816e007fc.jpeg
扫码立减50元,加入星球
即可学习LIO-SAM,星球内支持答疑

4.课程收获及亮点

(1)对LIO-SAM算法的原理及应用有更深刻地理解;
(2)对LOAM系列的传统激光3D SLAM算法的原理及局限有更深入的理解,了解到常见的分析和改进方法;
(3)学习到以初学者的角度,如何高屋建瓴的把握一类算法的学习方法和学习经验,了解作为初学者如何高效吃透一种算法
(4)掌握代码阅读及实现的方法,更加透彻的掌握代码阅读及实现过程

5.星球成员其他福利

除了学习本门课程LIO-SAM,我们还有享受以下星球福利

(1)优质的学习圈子

星球汇集了国内外各个高校的研究生、博士生,包括但不限于清华大学、上海交通大学、华中科技大学、武汉大学、南京大学、北京理工大学、北京航空航天大学;以及国外留学的小伙伴,主要就读于南加州大学、墨尔本大学、慕尼黑工业大学、亚琛工业大学等。除此之外,还有很多一线工作的算法工程师、开发人员,包括但不限于百度、旷视、华为、奥比中光、云从、阿丘科技等。

(2)各种SLAM学习文章及代码

星球中不仅包含3D激光SLAM的各种算法及代码讲解,另外涵盖了多模态融合SLAM、视觉SLAM、三维重建、相机标定等多种领域讲解专栏,更有如ORB-SLAM3、Vins-Fusion等各种经典框架的详细讲解视频教程,在星球进行提问可向包括讲师在内的多位领域大牛进行提问,并获得及时解答。

(3)免费学习星球内其他课程

加入星球后可免费学习星球专属课程:多模态融合SLAM、ORB-SLAM3、Vins-Fusion等15+门星球专属课程,如下所示:

26460bc33d2c037804ac42e4a11cd019.png

扫码即可学习本门课程

b44900d468a84b974bca65a0d07d2b03.jpeg
扫码立减50元,加入星球
即可学习LIO-SAM,星球内支持答疑
内容概要:本文详细介绍了一个基于Java和Vue的迁移学习与少样本图像分类系统的设计与实现,涵盖项目背景、目标、技术架构、核心算法、前后端代码实现、数据库设计、部署方案及应用领域。系统通过融合迁移学习与少样本学习技术,解决实际场景中样本稀缺、标注成本高、模型泛化能力差等问题,支持数据增强、预训练模型微调、原型网络(ProtoNet)等算法,并实现前后端分离、模块化设计、可视化监控与自动化工作流。项目提供完整的代码示例、API接口规范、数据库表结构及GUI界面,具备高扩展性、安全性和易用性,适用于医疗、工业、农业等多个领域。; 适合人群:具备一定Java、Vue和深度学习基础的研发人员、AI算法工程师、计算机相关专业学生及从事智能图像分析的科研人员。; 使用场景及目标:①在样本极少的场景下实现高精度图像分类,如医疗影像、工业缺陷检测;②构建可扩展、可视化的AI训练与推理平台;③学习如何将Python深度学习模型与Java后端集成,掌握前后端分离的AI系统开发流程;④了解迁移学习、少样本学习在实际工程中的落地方法。; 阅读建议:建议结合文档中的代码示例与流程图,搭建本地开发环境进行实践,重点关注前后端交互逻辑、Python模型服务调用机制及数据库设计,同时可基于项目结构扩展联邦学习、多模态融合等高级功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值