【洛谷】P1045 [NOIP2003 普及组] 麦森数

[NOIP2003 普及组] 麦森数

题目描述

形如 2 P − 1 2^{P}-1 2P1 的素数称为麦森数,这时 P P P 一定也是个素数。但反过来不一定,即如果 P P P 是个素数, 2 P − 1 2^{P}-1 2P1 不一定也是素数。到 1998 年底,人们已找到了 37 个麦森数。最大的一个是 P = 3021377 P=3021377 P=3021377,它有 909526 位。麦森数有许多重要应用,它与完全数密切相关。

任务:输入 P ( 1000 < P < 3100000 ) P(1000<P<3100000) P(1000<P<3100000),计算 2 P − 1 2^{P}-1 2P1 的位数和最后 500 500 500 位数字(用十进制高精度数表示)

输入格式

文件中只包含一个整数 P ( 1000 < P < 3100000 ) P(1000<P<3100000) P(1000<P<3100000)

输出格式

第一行:十进制高精度数 2 P − 1 2^{P}-1 2P1 的位数。

2 ∼ 11 2\sim 11 211 行:十进制高精度数 2 P − 1 2^{P}-1 2P1 的最后 500 500 500 位数字。(每行输出 50 50 50 位,共输出 10 10 10 行,不足 500 500 500 位时高位补 0 0 0

不必验证 2 P − 1 2^{P}-1 2P1 P P P 是否为素数。

解题思路

求位数

这道题我打表打了500行也没找到规律

实际上思路打开的话这道题很简单,首先很容易证明 2 p 2^p 2p 2 p − 1 2^{p} - 1 2p1的位数相同,所以不妨求 2 p 2^p 2p的位数, 2 n 2^n 2n的位数不好求,所以可以将他转换为 1 0 x 10^x 10x,这样x就是待求的位数了。

公式如下:
2 p ⇔ 1 0 l g 2 p ⇔ 1 0 p l g 2 2^p \Leftrightarrow 10^{lg{2^p}} \Leftrightarrow 10^{plg2} 2p10lg2p10plg2
故位数 x = ⌊ p l g 2 ⌋ + 1 x = ⌊plg2⌋ + 1 x=plg2+1

求最后500位数字

关于我暴力做结果T了四个点这件事

观察题目数据范围,3e6 * 500 > 1e8, 显然如果采取暴力做法的话一定会TLE,那么在高精度模拟时间复杂度不可能减小的前提下,应该如何优化整体的时间复杂度呢?

很快我的目光就锁定在了 2 p 2^p 2p,如果采用快速幂来进行优化,时间复杂度就会从O(p*500)降低到O(log§ * 500),这样就可以通过了。

代码实现

高精度乘法通用模板

vector<long long> mul(vector<long long> &A, vector<long long> &B)
{
    vector<long long> C(A.size() + B.size() + 7, 0);
    for (int i = 0; i < A.size(); i++)
    {
        for (int j = 0; j < B.size(); j++)
        {
            C[i + j] += A[i] * B[j];
        }
    }

    for (int i = 0; i + 1 < C.size(); i++)
    {
        C[i + 1] += C[i] / 10;
        C[i] %= 10;
    }
    while (C.size() > 1 && C.back() == 0)
        C.pop_back();

    return C;
}

快速幂代码

int qmi(int a, int b, int mod)
{
    int res = 1;
    while(b)
    {
        if(b & 1) res = 1ll * res * a % mod;
        b = b >> 1;
        a = 1ll * a * a % mod;
    }
    return res;
}

AC代码

#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <vector>
#include <algorithm>
#define endl '\n'
using namespace std;
const int N = 20;

vector<long long> mul(vector<long long> &A, vector<long long> &B)
{
    vector<long long> C(A.size() + B.size() + 7, 0);
    for (int i = 0; i < A.size(); i++)
    {
        for (int j = 0; j < B.size(); j++)
        {
            C[i + j] += A[i] * B[j];
        }
    }

    for (int i = 0; i + 1 < C.size(); i++)
    {
        C[i + 1] += C[i] / 10;
        C[i] %= 10;
    }
    while(C.size() > 500)
        C.pop_back();
    while (C.size() > 1 && C.back() == 0)
        C.pop_back();

    return C;
}

vector<long long> qmi(vector<long long> &a, int b)
{
    vector<long long> ans;
    ans.push_back(1);
    while (b)
    {
        if (b & 1)
            ans = mul(ans, a);
        b = b >> 1;
        a = mul(a, a);
    }
    return ans;
}
vector<long long> ans;
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    int p;
    cin >> p;
    cout << ceil(p * log10(2)) << endl;
    ans.push_back(2);
    ans = qmi(ans, p);
    ans[0]--;
    int gap = 500 - ans.size();
    int cnt = 0;
    while(gap > 0)
    {
        cnt++;
        cout << 0;
        if(cnt % 50 == 0)
            cout << endl;
        gap--;
    }
    for (int i = ans.size() - 1; i >= 0; i --)
    {
        cnt++;
        cout << ans[i];
        if(cnt % 50 == 0)
            cout << endl;
    }
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值