题目描述
A国有n个城市,编号依次为1,2,3....n。有n-1条高速公路,其中,第i条高速公路连接城市i与i+1 。n个城市依次排成一条链,每条高速公路可以双向通行(费用相同)。
每条高速公路的收费各不相同,分为两种收费方式:
对于高速公路i,不购买年卡,单次通行价格为ai元。
对于高速公路i,购买年卡花费ci元,使用年卡通过该高速公路,单次通行价格bi元(bi < ai)。
每条高速公路的年卡是独立的,不能在其他高速公路上使用。
有一名新手货车司机,有m-1个运输任务, 从城市D1出发,接下来需要依次去往城市D2,D3,...,Dm。第j个运输任务需要从城市Dj去往Dj+1,可能会经过多条高速公路。
货车司机没有经验,需要你来帮助他,通过购买某些高速公路的年卡,使他完成所有运输任务所花费的费用最小。输入
第一行两个整数n,m。
接下来一行m个整数,第i个整数表示Di。
接下来n-1行,每行三个整数,其中第i行的三个整数依次表示第i条公路的ai,bi,ci。输出
一个整数,表示货车司机需要花费的最少费用。
样例输入 Copy
4 4 1 4 2 3 130 100 90 120 60 80 100 65 75样例输出 Copy
590提示
样例解释
货车司机依次走的城市:1 2 3 4 3 2 3
货车司机总花费最小的方案如下:
购买第2条高速公路的年卡,花去80元。
1到2不使用年卡,费用130;
2到3使用年卡,费用60;
3到4不使用年卡,费用100;
4到3不使用年卡,费用100;
3到2使用年卡,费用60;
2到3使用年卡,费用60。
总花费为590。
全部输入满足:
2 ≤ N ≤ 105
2 ≤ M ≤ 105
1 ≤ Bi < Ai ≤ 105(1 ≤ i ≤ N - 1)
1 ≤ Ci ≤ 105(1 ≤ i ≤ N - 1)
1 ≤ Dj ≤ N(1 ≤ j ≤ M)
Dj≠Dj+1(1 ≤ j ≤ M - 1)
提交差分统计每段路通过了几次
感觉也做了好几遍了
代码
#include <iostream>
#include <algorithm>
typedef long long ll;
ll ou[100009], vip[100009], card[100009], n, m, ans = 0;
int main() {
ll l, r, z[100009]{ 0 };
std::cin >> n >> m >> l;
for (int i = 1; i < m; ++i) {
std::cin >> r;
z[std::min(l, r)]++;
z[std::max(l, r)]--;
l = r;
}
for (int i = 1; i < n; ++i)
std::cin >> ou[i] >> vip[i] >> card[i];
for (int i = 1; i < n; ++i) {
z[i] += z[i - 1];
ans += std::min(ou[i] * z[i], vip[i] * z[i] + card[i]);
}
std::cout << ans << '\n';
return 0;
}