LinearAlgebra_2

列空间和零空间

回顾

之前,简单介绍了线性代数的核心——线性空间,包括了线性空间是n维向量的线性组合,特征是对线性组合封闭。
然后介绍了线性子空间,考虑 R3 的线性子空间。
接着,考虑了 AX=b ,考虑了 A 的列空间。

主题

向量空间和子空间
列空间
零空间
AX=b的联系

例子

P和U是两个子空间,那么他们的交集肯定还是线性子空间,但是他们的并集不一定是线性子空间。


对于

A=123411112345

列空间是 R4 中的二维空间,也就是一条直线。

零空间的含义是AX=0的所有X组成的线性空间,对于A来说,零空间是 R3 中的一个平面,零空间也是向量空间哦,同样对线性组合封闭的。

AX=b什么时候有解?
当且仅当b在A的列空间中。

AX=b

用线性空间的思考方式考虑 AX=b

首先,考虑有没有解,如果 b A的列空间中,那么肯定有解,反之无解。

接下来,考虑有几个解,如果 A 的零空间是0,那么解只有一个,反之会有很多个,需要求出特解和通解。

最后,考虑如何判断 b A的列空间以及 A 的零空间是0
b A的列空间,可以消元看看x有没有解啊。
A 的零空间是0只需要保证 A 的各列之间相互独立,也就是不存在A的列的线性组合为0的情况,也就是每一个列对于向量空间Rn都有自己的贡献。

求解AX=0

回顾

上文,简单介绍了列空间和零空间。
列空间的作用是, AX=b 有解可以理解成 b A的列空间里面。
零空间的作用是, AX=0 的所有解所组成的线性空间。

主题

这里,主要求解 AX=0
需要用到 pivot variablefree variablepivot variablefree variable特解通解,rref指令null指令

AX=0求解的总体思路

首先,先求出矩阵A的upper form。
然后求出reduced echelon form。
根据上面,可以判断出主元的个数,主变量,辅助变量等。
挑选固定的辅助变量,主变量的值就被确定下来了,这样就可以解出特解。
通解的话为特解的线性组合。
特解的个数和辅助变量的个数相等。

例子

A =

     1     2     2     2
     2     4     6     8
     3     6     8    10

A2 =A'

     1     2     3
     2     4     6
     2     6     8
     2     8    10

rref(A)=

     1     2     0    -2
     0     0     1     2
     0     0     0     0

 rref(A2)=

     1     0     1
     0     1     1
     0     0     0
     0     0     0

由上面可以看到,reduced row echelon form可以通过消元先得到upper form,然后再从下到上得到rref。消元的过程,不会改变零空间,也不会改变 AX=0 的解。


rref中,可以看到很多信息,比如

rref(A)=

     1     2     0    -2
     0     0     1     2
     0     0     0     0
  1. 行3是行1和行2的线性组合
  2. 列2和列1线性相关,列4和前面的列线性相关
  3. 矩阵的秩为2,主元的个数为2,pivot variablepivot column的个数是2;free variablefree column的个数也是4-2=2。
  4. 矩阵转置后,rank不变。

有了rref,下面需要开始求解 AX=0 啦。
求解的整体思路是选择free variable,根据约束选择pivot variable,最后把零空间的一个解解出来。
但是零空间不只是只有一个解,有几个free variable就有几个零空间的基底。

零空间,就是特解的线性组合啦。特解的个数是free variable的个数,就是`n- rank

形式化的求解

R=[I0F0]

RX=0 的解就是 UX=0 ,是 AX=0 的解。

解可以写成

X=[FI]

也就是
[FI][IF]=0

零空间,就是所有不线性相关的特解为列的矩阵。


这样以来,给 AX=0 ,就可以通过消元得到rref,最后求出零空间,也就是所有 AX=0 解。

AX=b

这一章将要完整地解出linear equation AX=b

通过消元,看看是不是有解。
有解的话,看看是不是有唯一解。

  x1 + 2*x2 + 2*x3 + 2*x4 = b1
2*x1 + 4*x2 + 6*x3 + 8*x4 = b2
3*x1 + 6*x2 +8*x3 + 10*x4 = b3

什么时候有解

上面的式子,因为行相关的,所以要想有解,b必须满足特定的条件。
这点从消元可以看出来。

[A b]=

     1     2     2     2  b1
     2     4     6     8  b2
     3     6     8    10  b3

[A b]=

     1     2     2     2  b1
     0     0     2     4  b2-2b1
     0     0     0     0  b3-b2-b1

% 想要有解b3-b2-b1=0 b=[1,5,6]

>> rref(A)=

     1     2     0    -2
     0     0     1     2
     0     0     0     0

b必须存在于矩阵A的列空间中才会有解。
如果矩阵A的变换中出现0行,那么b的组合也必须出现零才有解,如果不出现0行的话那么肯定有解。
也就是说b必须和A的各列存在线性组合,也就是说当加上b的时候矩阵的秩应该增加0的,如果增加1那么说明b不能和A的各列线性组合,所以无解。

有解的话求解

特解

start by finding one solution
先求特解,把free variable都设置为0,把pivot variable解出来。

[A b]=

     1     2     2     2  b1
     2     4     6     8  b2
     3     6     8    10  b3

[A b]=

     1     2     2     2  b1
     0     0     2     4  b2-2b1
     0     0     0     0  b3-b2-b1


>> rref(A)=

     1     2     0    -2
     0     0     1     2
     0     0     0     0

b1,b2,b3 = 1,5,6
令x2 = x4 = 0
求解
x1 + 2x3 = 1
2*x3=3
所以得到特解
[-2 0 3/2 0]

求出通解

特解求出来后,就可以加上零空间构成通解。

X=Xp+Xn

AXp=b

AXn=0

通解为

Xcomplete=203/20+c12100+c22021


图形理解

R4 构成了四维空间,零空间表示这个四维空间经过原点的平面的线性空间。
特解指定了这个平面经过的点。


算法,通过消元,将free variable置为0,找到特解。
然后根据[I F][-F I ]’=0,求出零空间。
特解加上零空间构成了通解。

big picture

特解加上零空间构成的平面组成了通解。

这里写图片描述

m by n matrix A of rank r

I know always:

  1. r<=m
  2. r<=n

考虑满秩的情况


列满秩

列满秩,r==n,这对方程组意味着什么 ,特解零空间和通解分别会怎么样?


ans =

     1     0
     0     1
     0     0
     0     0

A:
说明列都线性不相关,free variable为0,零空间只有0,方程组如果有解(需要结合b)只有一个。
方程组的解有0个或者1个。


行满秩

行满秩,r==m,这对方程组意味着什么 ,特解零空间和通解分别会怎么样?

A:
零空间肯定不只是0是n-r,解肯定存在并且不止一个。(因为没有了b的限制条件了啊,并且零空间不只是0啊)


ans =

    1.0000         0   -0.8000   -0.6000
         0    1.0000    3.4000    2.8000

全满秩

行满秩,r==m,这对方程组意味着什么 ,特解零空间和通解分别会怎么样?

A:
肯定是一个可逆矩阵,行列式不为0,存在一个特解。
R=i

总结

矩阵的秩包含了矩阵解的所有信息,可以根据矩阵的秩判断解的情况与个数。
这里写图片描述

线性相关性,基,维数

回顾

前面,解决了线性方程组 AX=b 是否有解,有解的话是多少的问题。

主题

linear dependence
spanning a space
base and dimension

需要注意的是,上面这些都是形容bunch of vectors的。

线性无关

向量x1,x2,xn什么时候是线性无关的呢?
A:
如果只有系数为0的线性组合才能得到0,那么是线性无关的。

这就是看他的零空间啊。如果零空间不只是0,那么肯定是线性相关的,因为存在不为0的系数使得他们的线性组合是0。

矩阵的列无关,那么矩阵的列等于rank(A)。
将向量组的相关性和矩阵的秩联系在一起了(向量当做矩阵的列)。

最小生成子空间

spanning a space: 这个空间包含了vector的所有线性组合。
vector的线性组合是这个vector集合的最小生成子空间。

特定最小生成子空间的向量集中向量的个数有限制么?有一个最小值的限制。

向量空间的基就是

  1. 线性无关的
  2. 生成整个子空间 spanning space

也就是,向量的个数正好生成子空间,不多不少。

针对一个向量空间,不管是列空间,行空间,零空间,他们的基可能有很多个组合,但是确定的是基的个数是一定的。

基就是生成空间的最小的向量个数的向量集。

维数

确定的是基的个数是一定的。这个个数就是维数。

矩阵的秩等于矩阵主元的个数等于矩阵的列生成空间的维数。

dim(C(A))=r

dim(Null(A))=nr

四个基本子空间

回顾

上文,讨论了向量组线性无关的条件,其组成列的矩阵的零空间只有0这样说明线性无关。
向量组合可以生成空间,生成空间的最小数目的向量是这个空间的基,基的个数等于这个空间的维数。

主题

四个基本子空间

线性代数的核心,研究每个子空间,都需要知道这个子空间是属于那个大的空间的,它的维数是多少,它的一组基是多少。

列空间

C(A)Rm

dim(C(A))=r

base=A线r

注意行变换会影响列空间的。

零空间

N(A)Rn

dim(N(A))=nr

base=[FI]

研究列的线性组合怎么样为0

行空间

C(AT)Rn

dim(C(AT))=r

base=RREFr

行变换不影响行空间。

左零空间

叫左零空间的原因是:
ATy=0
yTA=0

N(AT)Rm

dim(N(AT))=mr

base=RREFEmr

研究左零空间的基,回顾 E[AI]=[RE] 求出 E

大图

这里写图片描述

  1. Rn中存在行空间,零空间,并且维度加起来等于n。

    • Rm 中存在列空间,左零空间,并且维度加起来等于m。
    • 行变换不影响行空间,但是影响了列空间,行变换后的列空间和之前的不一样。

      矩阵向量

      把3*3的矩阵当成向量。
      所有3*3的矩阵的集合就构成了一个新的向量空间,满足向量空间的八条规律。对线性组合封闭。

      那么,这个向量空间的子空间是什么呢?
      A:
      上三角矩阵,对称矩阵,以及前面两个的交集对角矩阵。

      这样的话就把向量空间从 Rn 扩充到 Rmn 上了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值