贝叶斯方法与正则项

从贝叶斯角度,正则项等价于引入参数 w 的先验概率分布。常见的L1/L2正则,分别等价于引入先验信息:参数w符合均值为0的拉普拉斯分布/高斯分布。

贝叶斯方法的参数估计

贝叶斯方法的参数估计,就是通过最大化后验概率来估计模型的参数。

假定模型参数为 w ,数据集为D,贝叶斯通过最大化后验概率估计模型参数 w ,即:

w=argmaxwp(w|D)=argmaxwp(w)p(D|w)P(D)=argmaxwp(w)p(D|w)

后验概率的展开形式

假定如下:

  • 样本独立不相关
  • 模型参数独立不相关

p(w)p(D|w)=i=1Kp(wi)i=1Np(Di|w)i=1Klogp(wi)+i=1Nlogp(Di|w)

最新的优化问题为:

w=argminwi=1Klogp(wi)i=1Nlogp(Di|w)

参数的先验概率与正则项

当参数 w 的先验概率满足高斯分布:

p(wi)=N(wi|μ,σ2)=12πσ2e(wiμ)22σ2

优化问题的左项中,如果 w 满足N(0,12λ)

i=1Klogp(wi)=i=1Klog12πσ2+i=1K(wiμ)22σ2=const+i=1K(wiμ)22σ2=const+λi=1Kw2i

这时候的优化函数为:

w=argminwλi=1Kw2ii=1Nlogp(Di|w)

同样地,参数 w 的先验概率满足均值为0的拉普拉斯分布,有:

w=argminwλi=1K|wi|i=1Nlogp(Di|w)

这说明:

  • L2正则,等价于参数 w 的先验分布满足均值为0的正态分布
  • L1正则,等价于参数w的先验分布满足均值为0的拉普拉斯分布
  • 拉普拉斯在0附近突出,周围稀疏,对应容易产生稀疏解的模型

这里写图片描述

模型举例

以参数 w 的先验概率满足均值为0的高斯分布为例,优化问题为:

w=argminwλi=1Kw2ii=1Nlogp(Di|w)

逻辑回归

i=1Nlogp(Di|w)=i=1Nlogθ(ynwTxn)=i=1Nlog(1+exp(ynwTxn))

所以有:

w=argminwλi=1Kw2i+i=1Nlog(1+exp(ynwTxn))

总结:逻辑回归,通过贝叶斯法最大化后验概率。在数据的概率满足逻辑函数的假设下得到了cross entropy的误差函数;在样本独立、模型参数独立、模型参数满足均值为0的高斯分布的假设下获得了L2正则项。

线性回归

线性回归,假设误差满足均值为0的高斯分布,该假设符合一般的规律。

p(Di|w)=12πσ2e(wTxiyi)22σ2

i=1Nlogp(Di|w)=i=1Nlog12πσ2e(wTxiyi)22σ2i=1N(wTxiyi)2

所以有:

w=argminwλi=1Kw2i+i=1N(wTxiyi)2

总结:线性回归,通过贝叶斯法最大化后验概率。在误差为均值0的高斯分布的假设下得到了square error的误差函数;在样本独立、模型参数独立、模型参数满足均值为0的高斯分布的假设下获得了L2正则项。

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值