23 6.6卷积神经网络LeNet

 

 

第一个 输入通道是1 输出是六  

 nn.Flatten  拉成一个大长条

 

 

 

 

 

 

 

 

 device没有给定的话 看你的网络层在哪

累加器

循环 移到device层

吧x放进网络算输出 与Y进行比较正确率,y元素个数

所有正确个数/总数

nn.init 中实现的初始化函数 uniform, normal, const, Xavier, He initialization_Wanderer001的博客-CSDN博客1. 均匀分布torch.nn.init.uniform_(tensor, a=0, b=1)服从~U(a,b)U(a,b)2. 正太分布torch.nn.init.normal_(tensor, mean=0, std=1)服从~N(mean,std)N(mean,std)3. 初始化为常数torch.nn.init.constant_(tensor, val)...https://blog.csdn.net/weixin_36670529/article/details/105975665 int weight 初始化weght  如果是全连接层或者卷积层 用uniform 初始化 别让用随机数的时候输入和输出方差 差太多

to 吧参数搬到GPU内存上

SGD

LOSS

动画效果

for 迭代数据

每次迭代 拿一个batch出来 梯度下降 吧输入输出弄GPU 。。。

【enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标。】

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值