第一个 输入通道是1 输出是六
nn.Flatten 拉成一个大长条
device没有给定的话 看你的网络层在哪
累加器
循环 移到device层
吧x放进网络算输出 与Y进行比较正确率,y元素个数
所有正确个数/总数
nn.init 中实现的初始化函数 uniform, normal, const, Xavier, He initialization_Wanderer001的博客-CSDN博客1. 均匀分布torch.nn.init.uniform_(tensor, a=0, b=1)服从~U(a,b)U(a,b)2. 正太分布torch.nn.init.normal_(tensor, mean=0, std=1)服从~N(mean,std)N(mean,std)3. 初始化为常数torch.nn.init.constant_(tensor, val)...https://blog.csdn.net/weixin_36670529/article/details/105975665 int weight 初始化weght 如果是全连接层或者卷积层 用uniform 初始化 别让用随机数的时候输入和输出方差 差太多
to 吧参数搬到GPU内存上
SGD
LOSS
动画效果
for 迭代数据
每次迭代 拿一个batch出来 梯度下降 吧输入输出弄GPU 。。。
【enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标。】