题目描述:
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
- Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
- Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
输入描述:
Line 1: Two space-separated integers: N and K
输出描述:
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
输入:
5 17
输出:
4
题意:
给定两个整数n和k
通过 n+1或n-1 或n*2 这3种操作,使得n==k
输出最少的操作次数
题解:
-
设置一个队列Q,从顶点出发,遍历该顶点后让其进队;
-
出队一个顶点元素,求该顶点的所有邻接点(对应于此题即FJ的三种走法), 对于没有遍历过的邻接点遍历之,并 让其进队;
-
若队空停止,队不空时继续第2步。
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
const int maxn = 100000 + 5;
int step[maxn],vis[maxn];
queue<int>q;
int bfs(int n,int k){
int now,next;
step[n] = 0;
vis[n] = 1;
q.push(n);
while(!q.empty()){
now = q.front();
q.pop();
for(int i = 1; i <= 3; i++){
if(i == 1) next = now - 1;
else if(i == 2) next = now + 1;
else if(i == 3) next = now * 2;
if(next < 0 || next > maxn) continue;
if(!vis[next]){
vis[next] = 1;
q.push(next);
step[next] = step[now] + 1;
}
if(next == k) return step[next];
}
}
}
int main(){
int n,k;
while(scanf("%d%d",&n,&k)!=EOF){
if(n >= k) printf("%d\n",n - k);
else printf("%d\n",bfs(n,k));
}
return 0;
}