[POJ 2449] Remmarguts' Date 第K短路

http://poj.org/problem?id=2449

题意:输入 n, m 表示给一个 n 个顶点 m 条边的有向图,然后输入 m 条边,最后一行输入 s, t, k,要求这个图中 s 点到 t 点的第 k 短路径。

思路:用 A* 求,估价函数f(i)=g(i) + h(i)。g(i) 就是 s 点到 i 点的某条路径的长度, h(i)就是i点到t的最短距离, h(i) 通过从终点开始 spfa 求出。A* 的过程中如果 t 点出队次数达到 k 次就表示求出来了。

#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>

using namespace std;

const int maxn = 1010;
const int maxm = 200200;

struct Side{
    int to, val, next;
};

int n, m;
Side side[maxm];
int vis[maxn], dis[maxn];
int head[maxn], tail[maxn];

void add(int u, int v, int val, int e){
    side[e<<1].to = v;
    side[e<<1].val = val;
    side[e<<1].next = head[u];  //正向边用于A*
    head[u] = e<<1;
    side[e<<1|1].to = u;
    side[e<<1|1].val = val;
    side[e<<1|1].next = tail[v];//反向边用于spfa
    tail[v] = e<<1|1;
}

int spfa(int rt)  //求出 h(i)
{
    queue<int> que;
    memset(vis, 0, sizeof(vis));
    memset(dis, 63, sizeof(dis));
    dis[rt] = 0;
    vis[rt] = 1;
    que.push(rt);
    while(!que.empty()){
        int rw = que.front();
        que.pop();
        vis[rw] = 0;
        for(int i = tail[rw]; ~i; i = side[i].next){
            int now = side[i].to;
            if(dis[now] <= dis[rw] + side[i].val)
                continue;
            dis[now] = dis[rw] + side[i].val;
            if(!vis[now]){
                vis[now] = 1;
                que.push(now);
            }
        }
    }
    return 0;
}

struct node{
    int pos, val;
    node(int a = 0, int b = 0){
        pos = a, val = b;
    }
    friend bool operator < (node a, node b){  //优先队列
        return dis[a.pos] + a.val > dis[b.pos] + b.val;
    }
};

int Astar(int s, int t, int k)  //A*
{
    priority_queue<node> que;
    memset(vis, 0, sizeof(vis));
    que.push(node(s, 0));
    while(!que.empty()){
        node rw = que.top();
        que.pop();
        if(++vis[rw.pos] > k)
            continue;
        if(vis[t] == k)
            return rw.val;
        for(int i = head[rw.pos]; i != -1; i = side[i].next){
            int now = side[i].to;
            que.push(node(now, rw.val + side[i].val));
        }
    }
    return -1;
}

int main()
{
    while(~scanf("%d%d", &n, &m)){
        int x, y, val;
        memset(tail, -1, sizeof(tail));
        memset(head, -1, sizeof(head));
        for(int i = 0; i < m; i++){
            scanf("%d%d%d", &x, &y, &val);
            add(x, y, val, i);
        }
        int s, t, k;
        scanf("%d%d%d", &s, &t, &k);
        spfa(t);
        if(s == t) k++;
        printf("%d\n", Astar(s, t, k));
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

achonor

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值