题目描述:
小P和小Q是好朋友,今天他们一起玩一个有趣的游戏。
他们的初始积分都为1,赢的人可以将自己的分数乘以 (K的平方),而输的人也能乘以K。
他们玩的太开心了,以至于忘了自己玩了多久,甚至 K 是多少和游戏进行的回合数 N 都忘了。
现在给出他们俩最终的积分a,b,请问是否存在正整数K、N满足这样的积分,判断他们的游戏结果是否可信。
输入描述:
第一行输入一个整数T(表示样例个数)
接下来T组样例
每组样例一行,输入两个正整数a,b(0<a,b<=1e9)
输出描述:
输出T行
一行输出一个样例对应的结果
若结果可信,输出 Yes
否则,输出 No
输入:
6
2 4
75 45
8 8
16 16
247 994
1000000000 1000000
输出:
Yes
Yes
Yes
No
No
Yes
题意:
题目描述
题解:
每回合有个k^3。
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
int main(){
ll n,m;
int t;
scanf("%d",&t);
while(t--){
scanf("%lld%lld",&n,&m);
ll cnt = ll(cbrt(n * m) + 0.5);
if(cnt * cnt * cnt == n * m)
printf("Yes\n");
else printf("No\n");
}
return 0;
}