题目描述:
Katya studies in a fifth grade. Recently her class studied right triangles and the Pythagorean theorem. It appeared, that there are triples of positive integers such that you can construct a right triangle with segments of lengths corresponding to triple. Such triples are called Pythagorean triples.
For example, triples (3, 4, 5), (5, 12, 13) and (6, 8, 10) are Pythagorean triples.
Here Katya wondered if she can specify the length of some side of right triangle and find any Pythagorean triple corresponding to such length? Note that the side which length is specified can be a cathetus as well as hypotenuse.
Katya had no problems with completing this task. Will you do the same?
输入描述:
The only line of the input contains single integer n (1 ≤ n ≤ 109) — the length of some side of a right triangle.
输出描述:
Print two integers m and k (1 ≤ m, k ≤ 1018), such that n, m and k form a Pythagorean triple, in the only line.
In case if there is no any Pythagorean triple containing integer n, print - 1 in the only line. If there are many answers, print any of them.
输入:
3
6
1
17
67
输出:
4 5
8 10
-1
144 145
2244 2245
题意:
如果能够确定直角三角形的某一条边,那么能否找到另外两条边使得这三条边组成直角三角形。注意,确定的边可以是直角边也可以是斜边。
题解:
百度查的公式
偶数的时候:
(n / 2 * n / 2 - 1) 和 (n / 2 * n / 2 + 1)
奇数的时候:
(n * n - 1) / 2 和 (n * n + 1) / 2
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
int main(){
ll n;
while(scanf("%lld",&n)!=EOF){
if(n < 3) printf("-1\n");
else if(n % 2 == 0){
ll l = (n / 2 * n / 2 - 1);
ll r = (n / 2 * n / 2 + 1);
printf("%lld %lld\n",l,r);
}
else{
ll l = (n * n - 1) / 2;
ll r = (n * n + 1) / 2 ;
printf("%lld %lld\n",l,r);
}
}
return 0;
}