马可夫模型是什么?
是一种随机模型,这种模型假设系统将来的状态是由当前的状态转变而来的, 并且不受当前状态之前的状态影响。
- 以城市旅游为例子: 我先去纽约 然后去波士顿 最后去华盛顿, 那么我们认为 到波士顿是基于纽约而来的,同理到华盛顿是基于 波士顿而来的。
马可夫链是什么?
就是系统状态转移的路径。 从以下的例子可以得出 4条 序列, 那么将这 4 条
- 以城市旅游为例子: A 同学的路径是从 纽约 -> 波士顿-> 华盛顿
B 同学的路径是从 华盛顿 -> 纽约 -> 波士顿
C 同学的路径是从 纽约 -> 华盛顿 -> 波士顿
D 同学的路径是从 波士顿 -> 华盛顿 -> 纽约
以上就是一个完整的markov chain, 从这个chain我们能得到什么信息呢?
首先 从纽约出发的下一个城市有两种可能 1. 波士顿 2. 华盛顿 那么从纽约出发到波士顿的概率就是 2/3. 到华盛顿的概率就是 1/3。
另外