Markov Model 马可夫模型 & Hidden Markov Model 隐马可夫模型

本文介绍了马可夫模型的概念,通过城市旅游的例子解释了马可夫链,展示了如何从马可夫链中获取概率信息并进行预测。接着引入隐马可夫模型,讨论了在考虑额外隐形变量(如花费)的情况下如何建立模型,并举例说明如何利用该模型进行最优解预测。
摘要由CSDN通过智能技术生成

马可夫模型是什么?

 是一种随机模型,这种模型假设系统将来的状态是由当前的状态转变而来的, 并且不受当前状态之前的状态影响。 

     - 以城市旅游为例子: 我先去纽约 然后去波士顿 最后去华盛顿,  那么我们认为 到波士顿是基于纽约而来的,同理到华盛顿是基于 波士顿而来的。


马可夫链是什么?

 就是系统状态转移的路径。 从以下的例子可以得出 4条 序列, 那么将这 4 条

    - 以城市旅游为例子: A 同学的路径是从  纽约 -> 波士顿-> 华盛顿

                                          B 同学的路径是从 华盛顿 -> 纽约 -> 波士顿

                                          C 同学的路径是从 纽约 -> 华盛顿 -> 波士顿

                                          D 同学的路径是从 波士顿 -> 华盛顿 -> 纽约

 

 以上就是一个完整的markov chain, 从这个chain我们能得到什么信息呢?

    首先 从纽约出发的下一个城市有两种可能 1. 波士顿 2. 华盛顿 那么从纽约出发到波士顿的概率就是 2/3. 到华盛顿的概率就是 1/3。

        另外

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值