数据结构(14)线性表之C++实现一元多项式相乘

导言

两个一元多项式相乘的算法,可以利用两个一元多项式相加的算法来实现,因为乘法可以分解为一系列的加法运算。

源码实现

#define   OK                    1
#define   ERROR                 0
#define   OVERFLOW             -2
#define   TRUE                  1
#define   FALSE                 0
typedef   int   Status;//为了方便算法可用性,算法的Status可以通过这里可改
#include <iostream>
#include <cstdlib>
using namespace std;
typedef struct{//项的表示,多项式的项作为LinkList的数据元素
    float coef;//系数
    int expn;//指数
}term, ElemType;//两个类型:term用于本ADT,ElemType为LinkList的数据对象名
typedef struct LNode{//节点类型
    ElemType  data;//这里表示了每一项,其指数和系数
    struct LNode *next;
}*Link, *Position;
typedef struct{//链表类型
    Link head, tail;//分别指向线性链表中的头结点和最后一个结点
    int len;//指示线性链表中数据元素的个数
}LinkList;//每一项组成一个列表
typedef LinkList polynomial;

Status InitList(LinkList *L)
{ /* 构造一个空的线性链表 */
    Link p;
    p = (Link)malloc(sizeof(LNode)); /* 生成头结点 */
    if (p)
    {
        p->next = NULL;
        (*L).head = (*L).tail = p;
        (*L).len = 0;
        return OK;
    }
    else
        return ERROR;//内存分配不够
}
Status ClearList(LinkList *L)
{ /* 将线性链表L重置为空表,并释放原链表的结点空间 */
    Link p, q;
    if ((*L).head != (*L).tail)/* 不是空表 */
    {
        p = q = (*L).head->next;
        (*L).head->next = NULL;
        while (p != (*L).tail)
        {
            p = q->next;
            free(q);
            q = p;
        }
        free(q);
        (*L).tail = (*L).head;
        (*L).len = 0;
    }
    return OK;
}
void FreeNode(Link *p)
{ /* 释放p所指结点 */
    free(*p);
    *p = NULL;
}
Status DestroyPolyn(LinkList *L)
{ /* 销毁线性链表L,L不再存在 */
    ClearList(L); /* 清空链表 */
    FreeNode(&(*L).head);
    (*L).tail = NULL;
    (*L).len = 0;
    return OK;
}
Status MakeNode(Link *p, ElemType e)
{ /* 分配由p指向的值为e的结点,并返回OK;若分配失败。则返回ERROR */
    *p = (Link)malloc(sizeof(LNode));
    if (!*p)
        return ERROR;
    (*p)->data = e;
    return OK;
}
Status InsFirst(LinkList *L, Link h, Link s) /* 形参增加L,因为需修改L */
{ /* h指向L的一个结点,把h当做头结点,将s所指结点插入在第一个结点之前 */
    s->next = h->next;
    h->next = s;
    if (h == (*L).tail) /* h指向尾结点 */
        (*L).tail = h->next; /* 修改尾指针 */
    (*L).len++;
    return OK;
}
Position GetHead(LinkList L)
{ /* 返回线性链表L中头结点的位置 */
    return L.head;
}
Status SetCurElem(Link p, ElemType e)
{ /* 已知p指向线性链表中的一个结点,用e更新p所指结点中数据元素的值 */
    p->data = e;
    return OK;
}
Status LocateElemP(LinkList L, ElemType e, Position *q, int(*compare)(ElemType, ElemType))
{ /* 若升序链表L中存在与e满足判定函数compare()取值为0的元素,则q指示L中 */
    /* 第一个值为e的结点的位置,并返回TRUE;否则q指示第一个与e满足判定函数 */
    /* compare()取值>0的元素的前驱的位置。并返回FALSE。(用于一元多项式) */
    Link p = L.head, pp;
    do
    {
        pp = p;
        p = p->next;
    } while (p && (compare(p->data, e)<0)); /* 没到表尾且p->data.expn<e.expn */
    if (!p || compare(p->data, e)>0) /* 到表尾或compare(p->data,e)>0 */
    {
        *q = pp;
        return FALSE;
    }
    else /* 找到 */
    {/* 没到表尾且p->data.expn=e.expn */
        *q = p;
        return TRUE;
    }
}
Status Remove_Polyn(LinkList *L, Link q)
{ //由于项的指数为0,删除掉已有的项
    Link p, h;
    h = L->head;
    while (h->next != q)
    {
        h = h->next;
    }
    //找到了
    if (q == L->tail)
    {//删除的如果是表尾,改变表尾
        L->tail = h;
    }
    h->next = q->next;
    free(q);
    L->len--;
    return OK;
}
int cmp(term a, term b) // CreatPolyn()的实参
{ // 依a的指数值<、=或>b的指数值,分别返回-1、0或+1
    if (a.expn == b.expn)
        return 0;
    else
        return (a.expn - b.expn) / abs(a.expn - b.expn);
}
void CreatPolyn(polynomial &p, int m)
{//输入m项的系数和指数,建立表示一元多项式的有序链表P
    InitList(&p);//初始化多项式链表
    Link h = GetHead(p);//设置头结点的数据元素
    ElemType e;//头结点设置
    Position q, s;
    e.coef = 0.0; e.expn = -1; SetCurElem(h, e);//设置头结点的元素
    for (int i = 1; i <= m; ++i)//依次输入m个非零项
    {
        cout << "第" << i << "项" << "的系数:";
        cin >> e.coef;
        cout << "第" << i << "项" << "的指数:";
        cin >> e.expn;
        if (!LocateElemP(p, e, &q, cmp))//当前链表中不存在该指数项
        {
            if (e.coef != 0)//不等于才插入
            if (MakeNode(&s, e))InsFirst(&p, q, s);//生成结点并插入链表
        }
        else//当前链表中存在该指数项,增加其系数
        {
            q->data.coef = q->data.coef + e.coef;
            //如果合起来等于0,则删除掉
            if (q->data.coef == 0)
                Remove_Polyn(&p, q);//删除掉当前节点
        }
    }
}
Status ListTraverse(LinkList L, void(*visit)(ElemType))
{ /* 依次对L的每个数据元素调用函数visit()。一旦visit()失败,则操作失败 */
    Link p = L.head->next;
    int j;
    for (j = 1; j <= L.len; j++)
    {
        visit(p->data);
        p = p->next;
    }
    cout << "\b ";
    if (L.len == 0)
        cout << "0";
    return OK;
}
void visit(ElemType e)
{
    if (e.coef > 0 && e.coef != 1 && e.expn != 0)
    {
        if (e.expn > 0)
            cout << e.coef << "x^" << e.expn << "+";
        else
            cout << e.coef << "x^(" << e.expn << ")+";
    }
    else if (e.coef < 0 && e.expn != 0)
    {
        if (e.expn > 0)
            cout << "(" << e.coef << ")x^" << e.expn << "+";
        else
            cout << "(" << e.coef << ")x^(" << e.expn << ")+";
    }
    else if (e.coef == 1 && e.expn != 0)
    {
        if (e.expn > 0)
            cout << "x^" << e.expn << "+";
        else
            cout << "x^(" << e.expn << ")+";
    }
    else if (e.expn == 0 && e.coef != 0)
        cout << e.coef << "+";
    else
        cout << "";//考虑用户输入可能有系数为0的情况,情况太多,避免万一

}
Position NextPos(Link p)
{ /* 已知p指向线性链表L中的一个结点,返回p所指结点的直接后继的位置 */
    /* 若无后继,则返回NULL */
    return p->next;
}
ElemType GetCurElem(Link p)
{ /* 已知p指向线性链表中的一个结点,返回p所指结点中数据元素的值 */
    return p->data;
}
Status DelFirst(LinkList *L, Link h, Link *q) /* 形参增加L,因为需修改L */
{ /* h指向L的一个结点,把h当做头结点,删除链表中的第一个结点并以q返回。 */
    /* 若链表为空(h指向尾结点),q=NULL,返回FALSE */
    *q = h->next;
    if (*q) /* 链表非空 */
    {
        h->next = (*q)->next;
        if (!h->next) /* 删除尾结点 */
            (*L).tail = h; /* 修改尾指针 */
        (*L).len--;
        return OK;
    }
    else
        return FALSE; /* 链表空 */
}
Status ListEmpty(LinkList L)
{ /* 若线性链表L为空表,则返回TRUE,否则返回FALSE */
    if (L.len)
        return FALSE;
    else
        return TRUE;
}
Status Append(LinkList *L, Link s)
{ /* 将指针s(s->data为第一个数据元素)所指(彼此以指针相链,以NULL结尾)的 */
    /* 一串结点链接在线性链表L的最后一个结点之后,并改变链表L的尾指针指向新 */
    /* 的尾结点 */
    int i = 1;
    (*L).tail->next = s;
    while (s->next)
    {
        s = s->next;
        i++;
    }
    (*L).tail = s;
    (*L).len += i;
    return OK;
}
Position PriorPos(LinkList L, Link p)
{ /* 已知p指向线性链表L中的一个结点,返回p所指结点的直接前驱的位置 */
    /* 若无前驱,则返回NULL */
    Link q;
    q = L.head->next;
    if (q == p) /* 无前驱 */
        return NULL;
    else
    {
        while (q->next != p) /* q不是p的直接前驱 */
            q = q->next;
        return q;
    }
}
void OrderInsertMerge(LinkList &L, ElemType e, int(*compare)(term, term))
{ // 按有序判定函数compare()的约定,将值为e的结点插入或合并到升序链表L的适当位置
    Position q, s;
    if (LocateElemP(L, e, &q, compare)) // L中存在该指数项
    {
        q->data.coef += e.coef; // 改变当前结点系数的值
        if (!q->data.coef) // 系数为0
        { // 删除多项式L中当前结点
            s = PriorPos(L, q); // s为当前结点的前驱
            if (!s) // q无前驱
                s = L.head;
            DelFirst(&L, s, &q);
            FreeNode(&q);
        }
    }
    else // 生成该指数项并插入链表
    {
        MakeNode(&s, e); // 生成结点
        InsFirst(&L, q, s);
    }
}
void MulPolyn(polynomial &Pa,polynomial &Pb)
{
    //多项式加法:Pa = Pa*Pb,利用两个多项式的结点构成“和多项式”
    Position qa = NULL, qb = NULL;
    polynomial Pc;//临时多项式链表
    term a, b,c;
    InitList(&Pc);
    qa = GetHead(Pa);//ha和hb分别指向Pa和Pb的头结点
    if (Pa.len != 0 && Pb.len != 0)
    {
        qa = qa->next;
        while (qa)
        {
            a = GetCurElem(qa);//得到当前结点
            qb = GetHead(Pb);
            qb = qb->next;
            while (qb)
            {
                b = GetCurElem(qb);
                c.coef = a.coef*b.coef;
                c.expn = a.expn + b.expn;
                OrderInsertMerge(Pc, c, cmp);
                qb = qb->next;
            }
            qa = qa->next;
        }
        DestroyPolyn(&Pb); // 销毁Pb
        ClearList(&Pa); // 将Pa重置为空表
        Pa.head = Pc.head;
        Pa.tail = Pc.tail;
        Pa.len = Pc.len;

    }
    else if (Pa.len == 0 )
    {
        //do nothing,because The polynoimal is 0

    }
    else if (Pb.len == 0)
    {
        Pa = Pb;//把Pb赋值给Pa,让其也为0
    }
}
int main()
{
    cout << "***************************************************************************" << endl;
    cout << "                   《数据结构》<C语言版本>严蔚敏 吴伟名 编著              " << endl;
    cout << "                                编写年月2016年3月                         " << endl;
    cout << "                                 编写者:YuYunTan                          " << endl;
    cout << "                                 一元多项式相乘                           " << endl;
    cout << "***************************************************************************" << endl;

    polynomial A, B;
    cout << "请输入第一个多项式的项数为:";
    int length;
    cin >> length;
    CreatPolyn(A, length);
    //显示A出来
    cout << "PA(x) = ";
    ListTraverse(A, visit);
    cout << endl;
    //输入B
    cout << "请输入第二个多项式的项数为:";
    cin >> length;
    CreatPolyn(B, length);
    //输出B
    cout << "PB(x) = ";
    ListTraverse(B, visit);
    cout << endl;
    //假设以上输入成功
    //进行相加
    MulPolyn(A, B);
    //这时候A是合并后的结果
    cout << "PA(x)*PB(x) = ";
    ListTraverse(A, visit);
    cout << endl;
    system("pause");
    return 0;
}

结果展示

这里写图片描述
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YuYunTan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值