前面讲过了无负权的图的最短路问题的做法分别是dijkstar算法和堆优化版的dijkstra算法
这种限制了边数的负权图最短路问题就可以用这叫啥bellman-ford算法
这个算法比较粗暴就是遍历所有的边,也就是dis[b]=min(dis[b],back[a],+c)
所以想怎么存图都可以,只要能够让我们遍历到所有的边,那么为什么是back而不是我们dis。
简单来说就是两次循环,外层的循环就是一条边,因为开始会给dis初始为无穷大,然后初始也只会有dis[1]=0, 遍历边的话,也只能修改到与1号点相接的点也就是第一条边,与其他相接的点顶多遇到负权边被修改一点数值,不受影响,外层循环第二层就是遍历到第二条边。直到第k次循环找到第k条边,但是这样的话会浪费很多时间因为很多次的,松弛操作都是无效的,因为连向它的那个点也没有被修改过,这是之后要讲的东西了
#include<iostream>
#include<cstring>
using namespace std;
const int N=510,M=10010;
int n,m,k;
int dis[N],back[N];
struct map{
int x,y,z;
}ma[M];
void bell()
{
memset(dis,0x3f,sizeof dis);
dis[1]=0;
for(int i=0;i<k;i++)//k条边,找k次
{
memcpy(back,dis,sizeof dis);
for(int j=0;j<m;j++)
{
int a=ma[j].x,b=ma[j].y,c=ma[j].z;
dis[b]=min(dis[b],back[a]+c);//
}
}
if(dis[n]>0x3f3f3f3f/2)cout<<"impossible"<<endl;
else cout<<dis[n]<<endl;
}
int main()
{
cin>>n>>m>>k;
for(int i=0;i<m;i++)
{
int x,y,z;
cin>>x>>y>>z;
ma[i]={x,y,z};
}
bell();
return 0;
}