- 博客(19)
- 资源 (5)
- 收藏
- 关注
原创 超详细CCG两阶段鲁棒优化以刘一欣两阶段微电网调度为例
超详细讲解刘一欣微电网两阶段CCG鲁棒经济调度模型,发现了文章中两个笔误,助力各位早日学会两阶段CCG鲁棒优化。矩阵法容易对偶转化也便于读者理解,但是太难找bug和后续修改啦,基于yalmip的kkt命令是一个不错的方法,可以看看我之前的帖子!
2025-05-05 18:12:26
136
原创 免费开源!鲁棒不确定集合快速建模方法
该命令可以帮助我们完成鲁棒对偶,减轻很多工作量,使我们从繁琐的对偶工作中抽身出来,将精力更多的集中到领域模型的建立中。基本对偶理论网络上已经有相当多的文章,感兴趣的可以自行搜索或看我之前的帖子。博主直接展示实操,具体代码在图片2和3中。该采用yalmip语言中的uncertain命令写的一份微电网经济调度代码,分别建立盒子不确定集,多面体不确定集合以及椭球不确定集合,微电网模型是中国电机工程学报上的经典文章。#综合能源系统优化调度 #鲁棒优化 #yalmip #教学 #电力系统。
2025-04-21 13:24:36
143
原创 总算是做出分布鲁棒优化了
21年开始了解分布鲁棒优化,当时写了一个简单的微电网分布鲁棒代码,努力学习了很久,各种加群问人,还邮件问大佬,但一直都没能正确求解,遂放弃。机缘巧合下,2025从新学习鲁棒优化,并看这份代码,才发现我当时离正确求解只差两步,时隔四年我才找到正确答案,可惜已经毕业了。
2025-04-12 13:06:38
280
原创 风光负荷三重不确定性的两阶段CCG鲁棒优化
该代码基于刘一欣经典两阶段微电鲁棒文章进行升级,在原先的基础上增加了风电不确定性,形成了开了风光负荷三重不确定性的两阶段微电网鲁棒经济调度。代码编写过程采用yalmip的kkt命令,相比对偶矩阵更加容易修改。#综合能源系统优化调度 #电力系统 #写论文 #鲁棒优化 #两阶段鲁棒 #两阶段CCG鲁棒。
2025-04-12 13:04:45
123
原创 为什么你的两阶段CCG鲁棒优化跑不成功?
代码命名要规范,采用英文首字母或缩写的形式,例如希腊字母η,应该写eta,而不是yita,约束要写清楚注释,这样便于以后找bug。这里分享一下个人调试BUG的技巧,当你的模型无解或无解时,你成片的注释掉一些约束,直到你的模型有解,随后再逐步释放一些约束,通过这种排查法,可以较快的找到BUG。先运行一下主问题,看结果符不符合预期,若符合,再运行子问题,看子问题符不符合预期结果,再运行一下主问题,看看结果。两阶段鲁棒更高级一点的BUG就是,建立的模型解空间太小,子问题的解,送主问题导致模型无解。
2025-04-11 23:22:21
236
原创 鲁棒优化入门(7):刘一欣微电网两阶段鲁棒经济调度优化运行
很早之前就拜读了刘老师微电网两阶段鲁棒优化经济调度的文章,文章写的清晰易懂,模型也不复杂,是微电网方面关于两阶段鲁棒的经典文章。这两天有空,便手动提取了一些数据,对文章进行了复现,与传统矩阵复现法不同,这次我尝试用KKT法进行复现。以刘老师的微电网经济调度为例,编写如下案例。两阶段鲁棒优化的原理推导部分,已经较多的文章进行分析。主问题与子问题相互迭代,当两个问题的最优解不断收敛并相等时,两阶段鲁棒CCG问题求解完成。目前,主流方式是,采用对偶定理或KKT条件,将第二阶段的双层问题变成单层问题。
2025-04-02 20:05:25
250
原创 鲁棒优化(6):构建数据驱动下的最小闭包椭球鲁棒不确定集合
在前面几期,作者简单分享介绍了鲁棒优化的入门,分享普通鲁棒不确定集合、多面体鲁棒不确定集以及椭球鲁棒不确定集合的构建以及对偶方法,有兴趣的朋友可以自行往前翻阅。今天要介绍的主题,是如何构建数据驱动下的鲁棒不确定集合。
2025-03-21 21:42:12
483
原创 鲁棒优化(4):通过yalmip中的kkt命令实现CCG两阶段鲁棒优化
简要介绍了CCG两阶段鲁棒优化,并通过yalmip中的kkt命令,编写了一个微电网案例。
2022-09-13 10:10:50
7785
37
原创 二阶锥潮流Distfolw(OPF)
最优潮流问题(OPF)引言本文将介绍以下几点内容:1.什么是最优潮流。2.什么直流潮流,什么是交流潮流。3.支路潮流法的相角松弛。4.支路潮流法的二阶锥松弛。5.支路潮流法的适用范围。6.举于matlab的代码实现。正文什么是最优潮流?有学过电力系统分析的同学,对这个概念都有了解。一言以蔽之,就是通过调整发电机出力,电容器投入退出等操作,使得电力系统网络发生改变。以达到发电成本最低,或者网络损耗最低。什么是直流潮流,什么是交流潮流?由于正常写出得交流潮流方程组是非凸的,所以要对其进
2021-09-24 09:19:15
10154
45
原创 从拉格朗日函数到线性对偶定理
从拉格朗日函数到线性对偶定理前言:接触线性对偶理论有一段时间,但是一直不知道它是如何推导出来的,仅以这篇博文记录以下推导过。假设存在如下线性规划问题。minc′xmin\quad c'xminc′xAx=bAx= bAx=b0≤x0\leq x0≤x进行拉格朗日松弛获得如下形式L(x,p)=c′x+p(Ax−b)0≤xL(x,p)=c'x+p(Ax-b) \qquad 0\leq xL(x,p)=c′x+p(Ax−b)0≤x假设原问题得最优解为x∗x^*x∗则存在如下不等式min0≤x
2021-09-19 17:36:44
470
原创 网络流问题(Network Flow Problems)
网络流问题(Network Flow Problems)在图论中,图分为无向图和有向图。G=(N,A),表示一个图的集合,N为节点数,A为边界数bib_ibi表示每个节点i的供应i属于Nuiju_{ij}uij表示边的容量(i,j)属于Acijc_{ij}cij表示每条边的运输成本fijf_{ij}fij表示边ij实际流过的流量,属于决策变量一边的网络流问题可以表示成如下基本模型minimize∑(i,j)∈Acij∗fijminimize \sum_{(i,j)\in A}c_{
2021-09-18 21:33:08
622
原创 发电机容量规划问题
发电机容量规划问题前言:通过发电机容量规划问题初步的了解一下线性规划的概念。工程中建设发电厂,都不是一下就建成的,会分成好几期进行规划建设。再规划建设过程中,我们如何再确保满足现在用电需求,以及未来用电需求的情况下,最小化投资成本呢?这就涉及到一个优化问题。对问题进行一定的简化,可以抽象出如下约束条件。负荷预测:如何进行负荷预测就需要另一块的内容,现在我们假设已经预测出未来T年一个城市的负荷(WM)为...
2021-09-18 10:57:31
436
原创 大M法的介绍以及建模过程中if else的实现
大M法的介绍以及建模过程中if else的实现前言:刚开始接触运筹优化时,经常听到大M法,又不太懂,现在写一篇文章记录一下对大M法的理解。大M法的作用一般而言大M法配合0、1变量可以实现对约束的选择,也就if else的语句。在我们平常的建模过程中我们会面临选择。举一个例子,ifthenelse类似于这种if的结构,需要经过线性转换才能被写入模型中。假设存在一个适当大小的正数M(M的大小会影响,转换的结果),以及一个0、1变量U。csnd的公式编辑太麻烦了,直接手写了一下。tips
2021-09-15 18:28:09
3973
2
原创 2021-07-14
文章目录前言一、摘要二、论文主体1.关于随机优化2.注意的符号总结前言数据驱动的鲁棒文献阅读Data-driven distributionally robust optimization usingthe Wasserstein metric: performance guaranteesand tractable reformulations一、摘要大致意思就是,wassertein分布鲁棒优化,是一个基于历史数据驱动的随机优化,是随机优化和鲁棒优化的结合体。在一些温和的假设下,是可以
2021-07-14 11:37:24
792
1
原创 2021-05-11
文章目录)前言1.学习代码如下总结前言在接触ai,或者机器学习的比赛时,首要任务是,怎么读取文件,怎么将文件变成标准数据类型。下面教大家matlab读取文件和去除字符串中分隔符的方法1.学习代码如下`%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%2021/05/11%%Yudibrother%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%data = importdata(‘C:\Users\雷克波\Desktop\train
2021-05-11 10:40:19
355
1
原创 鲁棒优化(3)-yalmip+guobi的小例子
前言前面我们已经介绍了,连续线性模型的鲁棒对等转换全部过程,本章内容分两部分.1.将鲁棒优化与机会约束结合,从概率的角度,选取Γ的大小,并给出一个简单易行的公式.2.结合实例,直观的阐述鲁棒优化的过程.实例选取股票的投资和回报问题一、如何选择Γ的大小在Bertsimas和Sim,2004的文章,The price of Robustness中通过中心极限定理给出了概率公式.过程非常复杂,所以本文直接给出结论公式.J是不确定向量的维度。概率由标准正态分布函数计算得出.大概有0.35的概率不被违
2021-04-28 17:31:22
4284
7
原创 鲁棒优化(2)
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、新的鲁棒优化模型二、使用步骤1.引入库2.读入数据总结前言上一篇文章以及讨论,最原始鲁棒优化,结果非常保守,但是它有一个非常重要的特点,它是线性模型,不需要很高深的知识就能看懂和求解.现在可以做鲁棒优化的工具箱很多,我们只需要理清思路,具体的实现可以交给工具箱。言归正传,数学家针对,鲁棒优化的保守度,进行研究,分别提出了椭球不确定集合,和多面体不确定集。椭球不确定集合涉及到二阶锥,求解困难,而且不容易理解,目前在工程
2021-04-27 17:22:50
5463
11
原创 鲁棒优化(1)
前言打算做一个鲁棒优化的系列,先从Bertsimas,2004的文章开始学习,最后的目标时做到分布鲁棒.一、什么是鲁棒优化简而言之,当你的模型存在不确定系数,而你需要免疫这些不确定系数,那你就需要考虑一下鲁棒优化.二、基本的模型和假设1.线性模型我们假设,c矩阵不包含不确定变量,如果你的模型包含不确定变量,可以将目标函数化成约束的形式.扰动变量只在A阵出现.,约束的右端都是确定参数.更具体的形式如上,公式(2).我们假设随机变量a,在一定范围内扰动,有上下界,且独立对称分布a_hat
2021-04-26 20:27:25
13270
7
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人