从拉格朗日函数到线性对偶定理

从拉格朗日函数到线性对偶定理

前言:接触线性对偶理论有一段时间,但是一直不知道它是如何推导出来的,仅以这篇博文记录以下推导过。
假设存在如下线性规划问题。
m i n c ′ x min\quad c'x mincx A x = b Ax= b Ax=b 0 ≤ x 0\leq x 0x
进行拉格朗日松弛
获得如下形式
L ( x , p ) = c ′ x + p ( A x − b ) 0 ≤ x L(x,p)=c'x+p(Ax-b) \qquad 0\leq x L(x,p)=cx+p(Axb)0x
假设原问题得最优解为 x ∗ x^* x则存在如下不等式
m i n 0 ≤ x    c ′ x + p ( A x − b ) ≤ c ′ ∗ x ∗ + p ( A x ∗ − b ) = c ′ x ∗ min_{0\leq x}\;c'x+p(Ax-b)\leq c'*x^*+p(Ax^*-b)=c'x^* min0xcx+p(Axb)cx+p(Axb)=cx
g ( p ) = m i n 0 ≤ x    c ′ x + p ( A x − b ) g(p)=min_{0\leq x}\;c'x+p(Ax-b) g(p)=min0xcx+p(Axb)可知对x逐点取最小就是g(p),同时由于是逐点取最小,肯定小于等于等x为确定值代入函数得值,当然就小于最优解。
现在对x逐点取最小后,g(p)进行优化,可知g§的最大值是小于等于原问题的下界的。
m a x g ( p ) = m a x    c ′ x + p ( A x − b ) = m a x    ( c ′ + p A ) x − p b max g(p)=max\;c'x+p(Ax-b)=max\; (c'+pA)x-pb maxg(p)=maxcx+p(Axb)=max(c+pA)xpb
c ′ + p ∗ A c'+p*A c+pA相当于x的系数,因为x大于0,如系数中有一个小于0,就会有存一个x,使得 ( c ′ + p A ) x (c'+pA)x (c+pA)x趋向于负无穷,那么max负无穷就没有任何意义,所以, c ′ + p ∗ A c'+p*A c+pA必须等于大于0
则可以转换成如下对偶问题
m a x    − p ∗ b max\;-p*b maxpb
约束条件
0 ≤ c ′ + p ∗ A 0\leq c'+p*A 0c+pA

举一反三就可以推出所有的线性问题的对偶问题的一般形式。

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值