两阶段鲁棒优化的原理推导部分,已经较多的文章进行分析。目前大部分同学面临的问题是,子问题模型中存在的双线性项该如何处理?
目前,主流方式是,采用对偶定理或KKT条件,将第二阶段的双层问题变成单层问题。
简略的思想如下:
首先是原始的两阶段模型:
对上述的两阶段模型,展开分成主问题与子问题:
主问题与子问题相互迭代,当两个问题的最优解不断收敛并相等时,两阶段鲁棒CCG问题求解完成。
更具体原理推导过程详见:
鲁棒优化| C&CG算法求解两阶段鲁棒优化:全网最完整、最详细的【入门-完整推导-代码实现】笔记
微电网两阶段鲁棒优化经济调度方法
列与约束生成(Column and Constraint Generation, C&CG/CCG)算法
以微电网经济调度为例,编写如下案例。程序中yalmip KKT命令的使用方法详见yalmip官网https://yalmip.github.io/command/kkt/
求解结果如下

收敛图如下所示
