利用大语言模型进行长文本抽取式摘要的突破

论文地址:https://arxiv.org/pdf/2408.15801v1

引言:信息过载时代的文本摘要需求

在信息爆炸的时代,如何从海量文本中快速提取关键信息成为了一项至关重要的技能。自动文本摘要技术应运而生,主要分为抽取式生成式两种方法。生成式方法虽然能够生成灵活且富有创意的摘要,但常常面临事实不准确幻觉问题,尤其在处理长文本时,这些问题更为突出。

相比之下,抽取式摘要通过直接从源文本中选择相关句子来生成摘要,能够更好地保证语法和事实的准确性。然而,传统的抽取式摘要方法多依赖于预训练的编码器模型,在处理长文本时存在一定的局限性。


EYEGLAXS:基于大语言模型的抽取式摘要框架

为了应对上述挑战,我们提出了EYEGLAXS(Easy Yet Efficient larGe LAnguage model for eXtractive Summarization)框架。该框架利用了大语言模型(LLMs)的强大能力,特别是LLAMA2-7BChatGLM2-6B,用于长文本的抽取式摘要。

### 使用Python库从PDF文档中抽取文本 #### PyPDF2 库的应用 对于页面级别的操作,`PyPDF2` 是一种选择。此库提供了 `PdfFileReader` 类用于读取 PDF 文件。为了提取文本,可以创建一个 `PdfFileReader` 对象实例,并利用其方法遍历每一页,进而调用 `.extract_text()` 方法获取页内的文本内容[^3]。 ```python import PyPDF2 def extract_text_from_pdf_pypdf2(pdf_path): with open(pdf_path, 'rb') as file: reader = PyPDF2.PdfFileReader(file) text = "" for page_num in range(reader.numPages): page = reader.getPage(page_num) text += page.extract_text() return text ``` 然而需要注意的是,`PyPDF2` 的文本提取功能可能无法完美处理复杂的布局或者带有图像的内容[^4]。 #### Pdfminer.six 库的优势与应用 当面对更复杂的需求时,比如不仅限于简单地按顺序抓取文字而是希望保留原始排版结构的情况下,则推荐使用 `pdfminer.six`。它能够执行更加精细的布局分析,从而更好地理解文档内部元素之间的关系以及它们的位置信息[^1]。 下面是一个简单的例子展示如何使用 `pdfminer.six` 来实现这一目标: ```python from io import StringIO from pdfminer.converter import TextConverter from pdfminer.layout import LAParams from pdfminer.pdfdocument import PDFDocument from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter from pdfminer.pdfpage import PDFPage from pdfminer.pdfparser import PDFParser def extract_text_from_pdf_pdfminer(pdf_path): output_string = StringIO() with open(pdf_path, 'rb') as f: parser = PDFParser(f) doc = PDFDocument(parser) rsrcmgr = PDFResourceManager() device = TextConverter(rsrcmgr, output_string, laparams=LAParams()) interpreter = PDFPageInterpreter(rsrcmgr, device) for page in PDFPage.create_pages(doc): interpreter.process_page(page) return output_string.getvalue() ``` #### 解决加密问题的方法 如果遇到加密的 PDF 文件,在尝试上述任何一种方式之前应该先对其进行解密。可以通过安装 qpdf 工具并通过 Python 调用来完成这一步骤[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值