引言:信息过载时代的文本摘要需求
在信息爆炸的时代,如何从海量文本中快速提取关键信息成为了一项至关重要的技能。自动文本摘要技术应运而生,主要分为抽取式和生成式两种方法。生成式方法虽然能够生成灵活且富有创意的摘要,但常常面临事实不准确和幻觉问题,尤其在处理长文本时,这些问题更为突出。
相比之下,抽取式摘要通过直接从源文本中选择相关句子来生成摘要,能够更好地保证语法和事实的准确性。然而,传统的抽取式摘要方法多依赖于预训练的编码器模型,在处理长文本时存在一定的局限性。
EYEGLAXS:基于大语言模型的抽取式摘要框架
为了应对上述挑战,我们提出了EYEGLAXS(Easy Yet Efficient larGe LAnguage model for eXtractive Summarization)框架。该框架利用了大语言模型(LLMs)的强大能力,特别是LLAMA2-7B和ChatGLM2-6B,用于长文本的抽取式摘要。