keras避免过拟合 阅读笔记

1.每一层的神经元数量,以及有多少层可以通过validation_loss值来较为直观的查看。 **A lower validation loss signals a better model.**val_loss达到最小值时得到的这个模型通常是最好的。

import matplotlib.pyplot as plt
val_loss = history.history['val_loss']

# b is for "solid blue line"
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()

2.正则化
根据奥卡姆剃刀原则,简单的模型应该比复杂的模型更不容易过拟合,应该对损失函数进行最小化的同时,也需要让对参数添加限制,这个限制也就是正则化惩罚项。 常用的正则化方式有L1,L2正则化。在keras中,

from keras import regularizers
#三种可用的正则化方法
keras.regularizers.l1(0.)
keras.regularizers.l2(0.)
keras.regularizers.l1_l2(0.)

model.add(layers.Dense(16, kernel_regularizer=regularizers.l2(0.001),
                          activation='relu', input_shape=(10000,)))

3.Dropout
有些中间输出,在给定的训练集上,可能发生只依赖某些神经元的情况,这就会造成对训练集的过拟合。而随机关掉一些神经元,可以让更多神经元参与到最终的输出当中。dropout可以随机的让一部分神经元失活,当我们采用了Dropout之后再训练结束之后,应当将网络的权重乘上概率p得到测试网络的权重。
keras中实现方式:(一般取值在0.2-0.5之间)

model.add(layers.Dropout(0.5))

Reference:
深度学习-避免过拟合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值