基于图神经网络的社交媒体预测问题

本文探讨了如何利用图神经网络预测社交媒体中单个用户的行为,通过构建用户邻接图和权重激发度映射,以识别潜在的行为模式。文章指出挑战包括多因素影响、权重和激发度的构建以及时间步长的选择,未来可能需结合NLP技术优化模型。
摘要由CSDN通过智能技术生成

基于图神经网络的社交媒体预测问题

一、问题背景与应用价值

随着互联网技术的发展,社交媒体平台应运而生,社交媒体平台将世界各地的人们连接起来,像推特、微博等平台都有一些线下社交没有的特点:社群人数大、社群人员来源丰富、社群种类丰富等,这些特点导致在同一话题下讨论的用户观点大相径庭,在同一公众人物的关注者中对其的态度也不尽相同,又由于线上互动的自由性,社交媒体中容易出现针对某些热点事件的激烈论战甚至出现“舆情”,因为平台用户基数大,所以舆论的发酵对现实问题的影响是巨大的。由此可见,倘若能够对社交媒体行为进行预测,提前进行风险管控,引导舆论向正常的方向进行,便能够避免许多悲剧的发生。

想要做到对社交媒体某个社群行为预测,首先要做到对单个用户的行为预测,本文便仅讨论社交媒体预测中单个用户的行为预测问题,即根据用户行为以及该用户相关用户的行为,预测下一个阶段该用户的行为。

二、数学描述

( 一 )单个用户的行为预测的定义

V = { v 1 , v 2 , ⋯   , v n } V=\{v_1,v_2,\cdots,v_n\} V={v1,v2,,vn} 为用户集合, u ∈ V u\in V uV u u u 为预测用户, V − u V-u Vu 为用户集合除预测用户外所有用户的集合。

定义1.1 V u V_u Vu 为u邻接顶点集合,对 ∀ v ∈ V − u \forall v\in V-u vVu ,若用户 v v v 关注了预测用户(称 v v v 为被关注用户)或预测用户关注了用户 v v v (称 v v v 为关注用户),则 v ∈ V u v\in V_u vVu ,且 u ∈ V u u\in V_u uVu

定义1.2 A u A_u Au 为u邻接边集合,对 ∀ v ∈ V u \forall v\in V_u vVu ,若用户 v v v 关注了预测用户(预测用户关注了用户 v v v ),则 ( v , u ) ∈ A u (v,u)\in A_u (v,u)Au ( u , v ) ∈ A u (u,v)\in A_u (u,v)Au );

若定义 G u = ( V u , A u ) G_u=(V_u,A_u) Gu=(Vu,Au) 为u邻接有向图,其中包含了与预测用户有关的所有用户的信息,则使用 G u G_u Gu 来描述预测用户的社交网络具有一定效果,关注用户会直接影响预测用户的行为,被关注用户对预测用户关注的话题感兴趣,故被关注用户也会反映预测用户的行为,但预测用户受不同关注用户的影响应该是不同的,并且关注用户和被关注用户对预测用户的行为的反映也应不同,于是应当引入权重信息在u邻接图中。

定义1.3 G u = ( V u , A u , f u ) G_u=(V_u,A_u,f_u) Gu=(Vu,Au,fu) 为u邻接顶点带权图,其中 f u : V u → S f_u:V_u\rightarrow S fuVuS,对 ∀ v ∈ V u \forall v\in V_u vVu f u ( v ) f_u(v) fu(v) 被成为顶点 v v v 的权重;

为了简化此问题,可以将每个邻接用户的权重与预测用户对该邻接用户的发帖评论进行的互动频率建立正比关系,通过统计一段时间内的互动频率来决定权重,构建权重映射 f u f_u fu .

定义1.4:当一个用户对某话题 T T T 进行发帖时,称该用户顶点 v v v 被激发;

定义激发这个概念是为了描述用户行为的发生,这里仅简单地将用户行为限定在发帖上。然而用户的发帖的多少或者情感的强烈程度还没有度量,因此定义应当定义激发的程度;

定义1.5:对于 G u = ( V u , A u , f u ) G_u=(V_u,A_u,f_u) Gu=(Vu,Au,fu) ,定义映射 g t : V u → T g_t:V_u \rightarrow T gt:VuT,对 ∀ v ∈ V u \forall v\in V_u vVu g t ( v ) g_t(v) gt(v) 被成为顶点 v v v 在一段时间 t t t 内的激发度;

显然,对于用户行为预测问题是一个时序问题,需要通过划分时间步长 t t t 来分析问题,于是应当将静态图变成带有时序信息的动态图。

定义1.6:称 G u t ( n ) = ( V u , A u , f u , g t ) G_u^t(n)=(V_u,A_u,f_u,g_t) Gut(n)=(Vu,Au,fu,gt) 为在第n个时间步长 t t t 内形成的图,图中包含每个用户对预测用户的权重信息(权重信息也可能随时间而改变),以及该时间步长内所有顶点(包括预测用户 u u u )的激发度信息;

( 二 )单个用户的行为预测的问题描述

则到此定义已经基本完善,对于单个用户的行为预测问题可以被初步描述。

问题描述:已知前 N N N 个时间步长 t t t 内的图 G u t ( n ) = ( V u , A u , f u , g t ) G_u^t(n)=(V_u,A_u,f_u,g_t) Gut(n)=(Vu,Au,fu,gt) 其中 n = 1 , 2 , 3 , ⋯   , N n=1,2,3,\cdots,N n=1,2,3,,N ,预测第 ( N + 1 ) (N+1) N+1 个时间步长内的图 G u t ( n ) G_u^t(n) Gut(n) g t ( u ) g_t(u) gt(u) ,倘若 g t ( u ) g_t(u) gt(u) 大于一定的阈值可以认为预测用户将会发帖,若 g t ( u ) g_t(u) gt(u) 非常大,可以认为预测用户将会对该话题激烈发帖,当社群中的大部分用户预测结果都是激烈发帖时,可以认为该情况风险较高,从而采取应对措施。

针对图的时序预测问题,可以想到使用图神经网络的方法来完成,而具体实现方法可以在将来的课程中学习。

三、困难及解决初步思路

  1. 困难:由于社交媒体预测问题是一个社会科学问题,其中涉及的因素的超多维度的,本文给出的定义仅仅使用“关注”关联预测用户与其他用户,忽略了预测用户点赞评论其他非关注用户的贴文的信息,甚至“关注”这个指标相对“点赞”、“评论”、“转发”的相关性可能更弱一些;解决初步思路:可以将图中顶点的类型从仅有“用户”一类变为“用户”、“推文”两类,同时建立在不同维度上的关系,例如将图变为三维图,分别对应“点赞”“评论”“转发”三个维度,每个维度上的边都是由该维度上的关系定义的有向边,例如如果用户 a a a 对推文 b b b 点赞,则在“点赞”的维度上就有一条有向边由 a a a 指向 b b b ,但此设置下会出现用户顶点只有出度、推文顶点只有入度的情况,用户与用户直接没有路连通,可能会对图神经网络的预测造成困难,所以可以将”转发“这个维度定义为由推文顶点指向用户顶点。
  2. 困难:多因素性使得对权重映射和激发度映射的构建上以及时间步长的选取上也存在困难;解决初步思路:可以应用自然语言处理相关技术分析具体帖文以及用户间的关心程度来构建权重映射和激发度映射,时间步长的选取可以使该时间步长内图的顶点激发度不全是很小的数,避免图的激发度信息稀疏。

实际预测难度很大,没被彻底解决,具有很大的挑战。

  • 6
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yummytanmo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值