【CQOI 2016】不同的最小割

这篇博客介绍了如何解决一个包含n个点m条边的网络流问题,求解两两节点间不同最小割的数量。通过分析,提出使用最小割树的概念,并证明可以通过选取特定节点对进行n-1次网络流计算来得到答案,时间复杂度为O(n*flow)。
摘要由CSDN通过智能技术生成

题目描述

给定一个 n 个点m条边的网络流,问两两点对之间不同的最小割数目。

n850,m8500

分析

最小割树。

考虑任意取出两个点 x,y ,求出任意一个最小割,那么与 x 集相连的点,以及与y集相连的点之中,各取一个 x,y ,其之间的最最小割必定就是 x y集之间的最小割。
证明?首先 x y间的最小割,必定是 x,y 的一个割。其次为什么是最小割呢?假如存在更小的一个割,那么 x y之间也就找到了更小的割,与 x,y 是最小割相违背。

于是剩下的就很显然了,只需要做 n1 次网络流就能搞出来。

时间复杂度 O(nflow)

根据引用所述,交错序列是一个仅由0和1构成的序列,其中没有相邻的1(可以有相邻的0)。特征值定义为x^ay^b,其中x和y分别表示0和1出现的次数。长度为n的交错序列可能有多个。问题要求计算所有长度为n的交错序列特征值的和除以m的余数。 根据引用所述,输入文件包含一个行,该行包含三个整数n、a、b和m。其中,1≤n≤10000000,0≤a、b≤45,m<100000000。 为了解决这个问题,可以使用动态规划和矩阵快速幂优化的方法,具体实现可以参考引用提到的相关算法。算法的思路是通过计算长度为n的交错序列的特征值,然后将所有特征值求和并对m取余数。 具体步骤如下: 1. 使用动态规划计算长度为n的所有交错序列的特征值,将结果保存在一个矩阵中。 2. 使用矩阵快速幂优化,将动态规划的过程进行优化。 3. 对优化后的结果进行求和,并对m取余数。 4. 输出结果。 参考引用给出的博客中的代码实现,可以帮助你更好地理解和实现该算法。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [BZOJ5298 CQOI2018 交错序列 【DP+矩阵快速幂优化】*](https://blog.csdn.net/weixin_30892987/article/details/99470493)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值