sklearn 随机森林(Random Forest)多分类问题

模型

随机森林是集成学习算法的一种。sklearn更多的集成学习算法
RandomForestClassifier 参数详解
重要的参数有基分类器的个数(n_estimators)、特征选择算法(critirion)、单个决策树的最大深度(max_depth)等。

预处理

import pandas as pd
path = "../Data/classify.csv"
rawdata = pd.read_csv(path) 
X = rawdata.iloc[:,:13]
Y = rawdata.iloc[:,14]  # {”A":0,"B":1,"C":2}
Y = pd.Categorical(Y).codes  # ABC变成123

建模

from sklearn.ensemble import RandomForestClassifier
model 
评论 40
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值