sklearn支持向量机(SVM)多分类问题

模型

sklearn.svm中的支持向量机
Classify:SVCnuSVCLinearSVC
Regression:SVRnuSVRLinearSVR
OneClassSVM

本文采用Classify系列,classify三个模型的区别参数详解

预处理

import pandas as pd
path = "../Data/classify.csv"
rawdata = pd.read_csv(path) 
X = rawdata.iloc[:,:13]
Y = rawdata.iloc[:,14]  # {”A":0,"B":1,"C":2}
Y = pd.Categorical(Y).codes  # ABC变成123

建模

from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, recall_score
import sklearn.svm as svm
x_train, x_test, y_train, y_test = \
    train_test_split(X, Y, test_size=0.3)
model = svm.SVC(kernel="linear", decision_function_shape="ovo")

训练

acu_train = model.score(x_train, y_train)
acu_test = model.score(x_test, y_test)
y_pred = model.predict(x_test)
recall = recall_score(y_test, y_pred
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值