sklearn聚类+评价实例

模型

用了KMeans、DBSCAN、层次聚类法

KMeans模型

class sklearn.cluster.KMeans(n_clusters=8, init='k-means++', n_init=10, max_iter=300, tol=0.0001, precompute_distances='auto', verbose=0, random_state=None, copy_x=True, n_jobs=1)

重要的指标:n_clusters 聚成几类

属性与方法详解

DBSCAN模型

class sklearn.cluster.DBSCAN(eps=0.5, min_samples=5, metric='euclidean', algorithm='auto', leaf_size=30, p=None, random_state=None)

重要的指标:eps半径、min_samples半径之内的最小样本数

属性与方法详解

层次聚类模型

class sklearn.cluster.AgglomerativeClustering(n_clusters=2, affinity='euclidean', memory=Memory(cachedir=None), connectivity=None, n_components=None, compute_full_tree='auto', linkage='ward')

重要的指标:n_clusters 聚成几类

属性与方法详解

有自上而下分层次的,也有自下而上分层次的

sklearn中的聚类模型

sklearn.cluster类库
在这里插入图片描述

评价指标

sklearn.metrics类库
在这里插入图片描述
这里选用homogeneity_completeness_v_measure,输出
homogeneitycompletenessv_measurev_measurehomogeneitycompleteness的调和平均数

数据

import pandas as pd
import numpy as np
rawdata = pd.read_csv(r"..\Data\cluster_N.csv")
X = rawdata.iloc[:,0:-1]
Y = rawdata.iloc[:,-1]

没有缺失值和异常值,暂时不特征选择

这个数据是有真实标签的,依据真实标签对聚类效果的评价

建模

Kmeans建模+评价

from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering
from sklearn.metrics import homogeneity_completeness_v_measure

def run_kmeans_model():
    model = KMeans(n_clusters
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值