VaR、CVaR求解,基于python
1.VaR值计算(在险价值)
(方差协方差法、蒙特卡洛模拟法、历史模拟法)
2.CVaR值计算、基于CVaR的投资组合优化(条件在险价值)
介绍
在金融风险管理和投资组合优化中,VaR和CVaR是两个重要指标。VaR代表在特定概率水平下的最大预期亏损,而CVaR代表超过VaR预期亏损的平均值。本文旨在介绍基于Python的VaR和CVaR求解方法,以及基于CVaR的投资组合优化方法。
VaR值计算
VaR是在金融领域中常用的一种风险测度指标,用于评估投资组合在正常情况下可能产生的最大损失。在计算VaR值时,常用的方法包括方差协方差法、蒙特卡洛模拟法和历史模拟法。
方差协方差法是一种经典的方法,用于计算VaR值。该方法假设资产收益符合正态分布,并利用资产的历史收益率和协方差矩阵来计算VaR值。
蒙特卡洛模拟法是一种基于概率模型的方法,可以在任何假设下计算VaR值。该方法通过模拟资产价格变化的随机过程,得到不同情况下的投资组合价值,从而计算VaR值。
历史模拟法是一种基于历史数据的方法,也是计算VaR值的一种常用方法。该方法直接使用历史数据来模拟资产价格变化的可能情况,并计算出在某个置信度下的VaR值。
CVaR值计算及基于CVaR的投资组合优化
CVaR是一种相对于VaR更为严