目录
什么是神经网络?
神经网络由很多神经元(类似人脑的神经元)组成,这些神经元按层次结构排列,并通过权重(类似神经连接强度)相互连接。
神经网络的目的是通过学习输入数据(x)和输出结果(y)之间的关系,来进行预测或分类。
每个神经元接收来自前一层的输入,并进行加权求和。然后,将这个和通过一个激活函数,得到该神经元的输出,输出会传递到下一层神经元。
f 就是激活函数(响应/挤压函数)
神经网络的基本结构是由输入层、隐藏层和输出层构成。
、
- 输入层(Input Layer):接收外部数据。每个神经元表示一个特征。
- 隐藏层(Hidden Layer):是神经网络的“工作区域”,负责学习输入数据的复杂模式和特征。可以有多层,通常深度神经网络有多个隐藏层。
- 输出层(Output Layer):输出网络的预测结果或分类结果。
神经元的“激活函数”
加权和 通过激活函数 f() 进行非线性变换,输出给下一层神经元。
Sigmoid:输出范围在 (0,1)(0, 1)(0,1),常用于二分类问题。
常见的激活函数包括Sigmoid、Tanh、ReLU、Leaky ReLU、Softmax等
我学bp的时候,用sigmoid函数。故其他的就不提了
多层前馈网络结构

-
输入层(Input Layer):该层负责接收输入数据。每个神经元代表一个输入特征。
-
隐藏层(Hidden Layers):该层是神经网络中间的部分,通常由多个神经元构成,神经元数量和层数可以根据具体任务来设定。隐藏层的作用是通过激活函数学习输入数据中的非线性关系。
-
输出层(Output Layer):该层给出最终的预测结果或分类标签。在回归任务中,输出层通常只有一个神经元;在分类任务中,输出层的神经元数等于类别数
-
通过权重传递信息:从输入层到隐藏层的信息是加权传递的,权重是神经网络在训练过程中学习得到的参数。