【机器学习】神经网络(BP算法)含具体计算过程

目录

神经元的“激活函数”

多层前馈网络结构​编辑

BP(BackPropagation:误差逆传播算法)

BP算法推导

手动计算BP神经网络的权值来实现学习

前向传播(正向运算)的过程

隐藏层输入:

隐藏层输出:

 输出层输入:

输出层输出:

个人计算过程: 

计算误差

误差反向传播


什么是神经网络?

神经网络由很多神经元(类似人脑的神经元)组成,这些神经元按层次结构排列,并通过权重(类似神经连接强度)相互连接。

神经网络的目的是通过学习输入数据(x)和输出结果(y)之间的关系,来进行预测或分类。

每个神经元接收来自前一层的输入,并进行加权求和。然后,将这个和通过一个激活函数,得到该神经元的输出,输出会传递到下一层神经元。 

f 就是激活函数(响应/挤压函数)

神经网络的基本结构是由输入层隐藏层输出层构成。

  • 输入层(Input Layer):接收外部数据。每个神经元表示一个特征。
  • 隐藏层(Hidden Layer):是神经网络的“工作区域”,负责学习输入数据的复杂模式和特征。可以有多层,通常深度神经网络有多个隐藏层。
  • 输出层(Output Layer):输出网络的预测结果或分类结果。

神经元的“激活函数”

加权和  通过激活函数 f() 进行非线性变换,输出给下一层神经元。

Sigmoid:输出范围在 (0,1)(0, 1)(0,1),常用于二分类问题。

常见的激活函数包括Sigmoid、Tanh、ReLU、Leaky ReLU、Softmax等

我学bp的时候,用sigmoid函数。故其他的就不提了

多层前馈网络结构

  • 输入层(Input Layer):该层负责接收输入数据。每个神经元代表一个输入特征。

  • 隐藏层(Hidden Layers):该层是神经网络中间的部分,通常由多个神经元构成,神经元数量和层数可以根据具体任务来设定。隐藏层的作用是通过激活函数学习输入数据中的非线性关系。

  • 输出层(Output Layer):该层给出最终的预测结果或分类标签。在回归任务中,输出层通常只有一个神经元;在分类任务中,输出层的神经元数等于类别数

  • 通过权重传递信息:从输入层到隐藏层的信息是加权传递的,权重是神经网络在训练过程中学习得到的参数。



BP(BackPropagation:误差逆传播算法)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识快到我脑里来

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值