2018中国人工智能应用与生态研究报告

原创 2018年04月03日 00:00:00


日前,《中国人工智能应用与生态研究报告》(以下简称《报告》)发布,《报告》对目前人工智能的应用场景和智能平台建设情况,选取视觉智能,语音智能、数据智能、企业智能四个领域,进行了研究分析。

 

《报告》分为六个目录:

一、中国人工智能应用、平台与生态现状;

二、视觉智能应用、平台与生态;

三、语音智能应用、平台与生态;

四、数据智能应用、平台与生态;

五、企业服务智能应用、平台与生态;

六、中国人工智能应用与趋势展望;


《报告》部分观点:


1.目前处于人工智能技术与企业业务的融合阶段,部分企业已经开始部署人工智能应用,并取得了一定的效果。


2.在人工智能厂商选型时,企业最看重厂商的技术实力、品牌、对于业务的理解和融合能力。


3.应用落地、平台构建、生态培养同步并举,厂商之间的竞争将在多个维度同时进行。人工智能生态各要素动态演进,基于开放平台的生态逐渐成型。


4.算力、算法和数据之后,场景成为人工智能应用的关键。


5.视觉智能已经迈过了技术拐点,走向应用普及阶段,并将成为未来5年最有商业前景的领域。人脸识别开启了人们的认知,但智能安防、智慧城市才是视觉智能的“星辰大海”。


6.语音智能交互系统在各个领域得到普及,B端和C端呈现不同的发展特点:C端呈现操作系统级别的竞争态势,B端市场窗口还很大,不同行业的垂直应用场景有待挖掘。


7.数据分析和数据挖掘是数据智能的基础,局域智能将向全域智能转变,BATJ为代表的互联网巨头具有巨大优势。海量的数据将在“云端”汇聚,并实现数据之间的高度融合,“云端数据智能”将更加普遍。


8.由于新零售概念的兴起,大家逐步关注到线下数据的价值,并通过高德地图、美团、支付宝、微信等应用,结合人脸识别等新手段,大量获取线下数据尤其是线下消费和支付数据,最终实现线上数据与线下数据的融合,构建更完善的用户画像。


9.目前企业智能还处于初级阶段,“人工智能技术+业务场景+管理流程”是企业智能的理想模式。企业内部数据的打通、人机协同是企业智能接下来的发展重点。


10.技术与业务融合度不高、数据匮乏是阻碍人工智能应用的重要因素。数据垄断成为人工智能产业发展的一大障碍,商业利益协调艰难、数据边界不清晰,是阻碍数据共享的关键因素。未来一种可能的状态是:政府、企业联动,建立开放共享、利益边界清晰的数据生态。

 

《报告》认为:


视觉视觉智能是5年内最有商业前景的人工智能应用领域。2018年,智能安防将是视觉智能厂商的发展中心。根据中安协发布《中国安防行业“十三五”(2016-2020年)发展规划》指出,“十三五”期间,安防行业将向规模化、自动化、智能化转型升级,且到2020年,安防企业总收入达到8000亿元左右,年增长率达到10%以上。只是智能安防这一个领域,就足够支撑多个百亿级别的独角兽企业,满足资本对于视觉智能厂商的业绩期望。在智能安防领域,按商业演进路径可以将厂商分为两类:以旷视科技、商汤科技和博思廷为代表的“AI+安防”类厂商,和以海康威视威为代表的“安防+AI”类型厂商。智慧城市将是视觉智能最大的应用领域,未来的市场规模必将在万亿以上。视觉智能+数据分析,将成为智慧城市系统的主体,发挥最为关键的作用。视觉智能应用,已经从图像识别、物体识别转向计算机视觉理解、视频理解这些更具挑战和应用价值的领域,未来其应用前景必将更加广阔。随着芯片技术的发展,终端智能将获得快速提升。云+端的数据处理方式成为潮流。未来智能终端将成为视觉智能应用重要的计算载体,同时云端对于数据打通将发挥关键作用。

 

语音智能领域,总体上来看,C端语音智能市场已经开始显现操作系统级别的竞争,并以开放平台和生态体系的方式来进行竞争,主要表现:不断嵌入更多的智能硬件设备,其中又主要是手机和智能音箱,并逐步扩展到智能机器人、智能家居等领域。厂商之间的竞争焦点集中于手机厂商、智能硬件厂商;在自家的语音交互系统中不断接入更多的服务,不断扩展用户通过智能语音助手能做的事情;构建开放平台,聚拢大量的软硬件合作伙伴,以生态体系的力量来强化其竞争优势和市场领导能力。


目前国内主流语音智能厂商的识别率普遍高于97%,迈过了是商业应用的技术门槛。语音识别准确率方面,科大讯飞、百度、思必驰等领先,科大讯飞在方言领域的高识别率是其一大特色。远场降噪和远场识别能力的提升,催生出智能音箱产品,进一步推动智能硬件的发展。科大讯飞、百度等主流厂商,其机器翻译能力也已经达到国际领先水平。语音智能与视觉智能、无人驾驶一起,成为我国人工智能产业的三张名片。基于语义理解的语境理解、意图理解,形成更自然的人机交互,是一大难点。


B端语音智能市场窗口较大,基于语音交互的垂直应用场景有待挖掘。基于语义理解和语音交互的垂直应用场景进一步深耕,具有语境理解、多轮对话、可随时打断等能力,是语音智能厂商的重要竞争力。智能客服、嵌入企业管理软件的语音助手、医疗机器人等是重要的细分领域。尤其是智能客服,针对不同行业的业务属性,开发场景化语音交互系统,是一个有待进一步挖掘的蓝海市场。智能车载、智能家居、智能机器人、智能可穿戴领域,语音智能厂商纷纷跟进对应赛道。在企业管理软件系统中,语音智能具有很大的应用潜力:一方面,办公软件尤其是移动办公软件中,已经有一些厂商尝试在其产品中嵌入语音助手模块,让用户可以用语音交互的方式处理工作事宜;另一方面,基于语义理解的业务流程打通,将语音交互融入其业务流程系统,这也是企业管理软件厂商主要的发展方向。

 

数据智能领域,数据分析与智能决策、数据可视化、智能营销、用户画像与个性化推荐,BI等是重要的细分领域;在数据类型方面,移动数据和线下零售数据的分析成为热点。随着大数据产业的发展,基本的数据局积累和数据处理体系已基本成型,未来关注的重点将转向多渠道、多种数据形式的融合,并且会从局域智能转向全域智能。局域智能是在某个细分领域的数据智能,为用户解决某些特定类型的问题。与之对应的,全域智能将实现三方面的突破:


1. 多渠道数据的融合。包括PC数据、移动端数据、物联网数据、线上数据和线下数据的融合;


2. 多类数据的融合。不仅能处理结构化数据,也能处理文本、语音、图像、视频等非结构化数据,并能实现数据打通,基于多种类数据的全面分析提供结果和决策建议;


3. 多维度数据融合。包括电商数据、社交数据、搜索数据、线下消费数据等多维数据的融合;


另外,局域智能更多的侧重于分析,而全域智能则更多侧重决策建议,并为用户自动化处理部分事物。


深度用户画像成为行业基础,互联网巨头在数据智能领域优势巨大。很多数据智能应用都是以用户画像为基础的,以此衍生出个性化推荐、智能营销、商业智能、安全态势感知等。更进一步的,深度用户画像能对用户特征进行更深入的刻画,可以据此开展一些更高价值的智能服务,比如金融风控,这在金融尤其是互联网金融领域具有广泛地应用。


互联网巨头,由于其海量的数据积累和较强的综合实力,在数据智能应用领域具有很大的优势,并且这一优势还会进一步加强。这其中阿里巴巴的优势最为明显,阿里的电商数据、支付数据、物流数据是价值量最高的几类数据,可以基于对用户实现全面的特征刻画,进而发展出丰富的智能应用。由于新零售概念的兴起,大家逐步关注到线下数据的价值,并通过高德地图、美团、支付宝、微信等应用,结合人脸识别等新手段,大量获取线下数据尤其是线下消费和支付数据,最终实现线上数据与线下数据的融合,构建更完善的用户画像。云计算的成熟,有力地推动了数据积累和数据分析产业的发展,也有效促进了数据的融合。未来,海量的数据将在“云端”汇聚,并实现数据之间的高度融合,“云端数据智能”将更加普遍。


企业智能领域,“人工智能技术+业务场景+管理流程”是企业智能的理想模式。《报告》认为,企业智能目前还处于探索期,模式尚不固定,智能助手、人脸识别打卡等只是初级应用,并没有切入企业智能的核心 。比较成熟的企业智能应用,一定是要实现人工智能技术与企业管理流程、业务场景的高度融合。未来,人工智能技术,尤其是语义理解、数据挖掘技术,将嵌入企业信息系统的各个领域,包括ERP系统、CRM系统、HR系统、SCM系统以及财务系统等。通过对这些系统中各种数据信息的理解和价值挖掘,然后结合管理流程,以及融合业务场景的知识图谱,对企业整体及各个细分领域的运营情况进行全面细致的分析。更进一步的,智能系统能依据特定流程自动处理一定的。


企业内部数据的打通、人机协同是企业智能接下来的发展重点。通过数据和行业、业务知识的整合,构建针对特定行业的知识图谱,“专家系统”有可能获得重生,并发挥较大的价值。一方面,建立企业内部专家系统,辅助企业的管理决策和业务开展,也为新员工的培训提供帮助。另一方面,作为企业业务系统的延伸对外提供服务,比较典型的如智能客服系统,依据对行业和企业业务的知识图谱,回答客户的问题,进行一些业务操作。未来几年,嵌入式智能将得到进一步普及,在企业服务领域智能硬件设备的使用成为一个亮点。


人与人工智能的关系可以分为三类:机器主导、人主导、人机协同。未来不再是单一的人主导或者机器主导,而是人机高效协同。人提出问题,提供数据资料,智能系统根据信息进行提出决策建议,并在一定业务范围内实现自动化运营,人是智能服务的受益方。通过企业智能应用,可以实现科学化决策、自动化运营、人机高效协同的组织状态。

 

此外,对于推动我国智能产业的发展策略方面,《报告》指出:


一方面,加快相关法律法规的研究和发布。清晰定义各类数据价值和数据交易规范,厘清数据共享与个人隐私、企业利益诉求之间的关系。政府加大数据开放力度,拓宽开放数据的种类,提高开放数据质量。推动企业尤其是互联网巨头组建数据共享联盟,推动企业之间、企业与政府之间的数据共享。建立、完善数据交易中心,推动基于真实数据价值得数据交易,充分考虑个人隐私和企业利益诉求的,实现数据交易和数据共享的可持续发展。组建基础资源公共服务平台,建立面向社会开放的图像、语音、视频、文本等多样化数据形式的训练资源库和标准测试数据集。


另一方面,在政府指导下,建立企业之间的数据联盟,厘清利益关系,在充分尊重各自数据权益和利益诉求的前提下,协商可交易、共享的数据范围,规范交易、共享的方式和流程。推动数据在互联网企业、传统企业、研究机构、政府之间的流动,在流通中实现数据价值。建立数据标准,尤其是数据接口标准,构建数据接口API ,方便进行数据调用。建立企业尤其是互联网企业之间、互联网企业与传统企业之间的利益协调机制,从根本上保障数据共享的有效推动。


更近一步的,在国家层面实施“一体两翼”战略:


“一体”:


政府联合企业构建基础资源公共服务平台,如新型计算集群共享平台、算法与技术开放平台、人工智能模型训练数据库等。


“两翼”:


一、对实施人工智能应用的企业进行一定的税收优惠和补贴,推动人工智能应用在传统企业中的普及。


二、建立超大规模的国家人工智能产业基金,至少在5000亿量级以上(不低于软银“愿景”基金规模)。对内扶持初创人工智能企业,对外进行全球性的产业大并购。另外,为将来部分“中概股”企业国内上市提供政策和资本支持。


企业层面,在竞争的同时加强技术交流与技术合作,尤其是底层、前沿领域的技术合作。借鉴美国谷歌、脸书、亚马逊、IBM、微软5家科技公司成立的人工智能联盟,国内以以BAT、科大讯飞为代表的互联网巨头以及旷视、商汤等新兴人工智能独角兽,应尽快建立类似的联盟,推动技术合作和产业发展。加快构建人工智能基础资源公共服务平台,以更大的力度推进基础数据和技术的开放。领先人工智能公司应该以更大的担当,深耕人工智能芯片、量子计算、机器学习、深度学习、增强学习等前沿领域,拓宽中国人工智能产业的发展边界。推动企业与高校、研究院所的人才流动和联合培养机制。




咨询关于本报告的内容与数据

详询微信:oyg0001




报告全览


640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=png

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg


中国软件

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Z1Y492Vn3ZYD9et3B06/article/details/79812027

2017年中国人工智能产业最全研究报告发布 | AI世界2018年八大趋势

来源: 数据观 概要:从目前来看,计算机视觉技术是人工智能的核心技术之一,广泛的商业化渠道和技术基础使其最为热门。 目前,中国的人工智能研究处于爆发期,行业巨头公司正逐渐完善自身在人工智能...
  • cf2SudS8x8F0v
  • cf2SudS8x8F0v
  • 2017-11-23 00:00:00
  • 561

2017年中国人工智能产业专题研究报告(完整版)

来源:数据观 概要:目前,中国的人工智能研究处于爆发期,行业巨头公司正逐渐完善自身在人工智能的产业链布局,而不断涌现出的创业公司将持续在垂直领域深耕深挖。 目前,中国的人工智能研究处于...
  • cf2SudS8x8F0v
  • cf2SudS8x8F0v
  • 2017-11-06 00:00:00
  • 884

【人工智能】艾瑞咨询:2018年中国人工智能行业研究报告

人工智能赛博物理操作系统AI-CPS OS“人工智能赛博物理操作系统”(新一代技术+商业操作系统“AI-CPS OS”:云计算+大数据+物联网+区块链+人工智能)分支用来的今天,企业领导者必须了解如何...
  • np4rHI455vg29y2
  • np4rHI455vg29y2
  • 2018-04-15 00:00:00
  • 42

2018年中国AI行业研究报告(附下载)

艾瑞咨来源:艾瑞咨询核心观点:1.广义人工智能指通过计算机实现人的头脑思维所产生的效果,是对能够从环境中获取感知并执行行动的智能体的描述和构建;相对狭义的人工智能包括人工智能产业(包含技术、算法、应用...
  • eNohtZvQiJxo00aTz3y8
  • eNohtZvQiJxo00aTz3y8
  • 2018-04-04 00:00:00
  • 225

【人工智能】2017年中国人工智能城市展望研究报告

1月3日,艾瑞咨询发布《2017年中国人工智能城市展望研究报告》,报告显示,政府在近三年时间密集出台鼓励人工智能技术发展的政策,说明十分重视此次技术发展的机遇,从大力促成中国到2030年成为世界人工智...
  • np4rHI455vg29y2
  • np4rHI455vg29y2
  • 2018-01-06 00:00:00
  • 389

2017年中国人工智能行业白皮书.pdf

  • 2018年01月27日 17:06
  • 2.65MB
  • 下载

2018年中国人工智能行业研究报告-艾瑞咨询PDF版本

  • 2018年04月16日 01:35
  • 12.39MB
  • 下载

2017年中国人工智能产业专题研究报告

  • 2017年08月17日 11:01
  • 2.27MB
  • 下载

2016中国人工智能行业系列研究——中国计算机视觉应用专题研究报告

  • 2017年11月17日 21:26
  • 2.99MB
  • 下载
收藏助手
不良信息举报
您举报文章:2018中国人工智能应用与生态研究报告
举报原因:
原因补充:

(最多只允许输入30个字)