(半平面交)POJ3335Rotating Scoreboard

POJ3335Rotating Scoreboard

题意:

给你一个多边形,问是否有一个区域能被所有边界上看到。

思路:

求多边形的核,自然用到半平面交。但是所给点的顺序不知道是顺时针还是逆时针序,我们可以通过求面积来判断,如果面积为正,那么就是逆时针序;反之为顺时针序。然后把直线方向全部按逆时针给出,这样的半平面交才正确。

代码:

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<algorithm>
#include<string.h>
#include<ctype.h>
#include<queue>
#include<set>
#include<stack>
#include<cmath>
#include<map>
#define pii pair<int,int>
#define ll long long
#define cl(x,y) memset(x,y,sizeof(x))
#define ct cerr<<"Time elapsed:"<<1.0*clock()/CLOCKS_PER_SEC<<"s.\n";
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define all(x) x.begin(),x.end()
#define lson x<<1,l,mid
#define rson x<<1|1,mid+1,r
#define INF 1e18
const int N=1e4+10;
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
const double eps=1e-8;
const double pi=acos(-1);
using namespace std;
int sgn(double x)
{
    if(fabs(x) < eps)return 0;
    if(x < 0) return -1;
    else return 1;
}
struct point
{
    double x,y;
    point(){}
    point(double xx,double yy){x=xx;y=yy;}
    point operator +(point b){return point(x+b.x,y+b.y);}
    point operator -(point b){return point(x-b.x,y-b.y);}
    double operator ^(point b){return x*b.y-y*b.x;}//叉乘 
    double operator *(point b){return x*b.x+y*b.y;}//点乘 
    point operator *(double b){return point(x*b,y*b);}//数乘  
	double gettan(){return atan2(y,x);}//角度 
    void read(){scanf("%lf%lf",&x,&y);}
}p[N];
struct line
{
    point s,e,l;
    line(){}
    line(point ss,point ee){s = ss;e = ee;l=e-s;}
    void read(){s.read(),e.read();l=e-s;}
    double gettan(){return atan2(e.y-s.y,e.x-s.x);}
};
point getcross(line l1,line l2)
{
	double s1=((l2.s-l1.s)^(l2.e-l1.s));
	double s2=((l2.e-l1.e)^(l2.s-l1.e));
	if(s1+s2==0)//平行 
		return point{inf,inf};
	return l1.s+l1.l*(s1/(s1+s2));
}
int cmp(line a,line b)
{
	double t1=a.gettan(),t2=b.gettan();
	if(sgn(t1-t2)==0)
		return (a.l^(b.e-a.s))>0;
	return t1<t2;
}
//判断bc交点是否在a的右边,如果在,去掉头部或者尾部的线 
int onright(line a,line b,line c)
{
	point p=getcross(b,c);
	return sgn(a.l^(p-a.s))<0;
} 
//半平面交 
int hpi(line li[],int n)
{
	line que[N];
	sort(li+1,li+n+1,cmp);
	int l=1,r=1,cnt=0,i;//模拟deque
	//去重,极角相同取左边,即保留最后直线 
	for(i=1;i<n;i++)
		if(sgn(li[i].gettan()-li[i+1].gettan()))
			li[++cnt]=li[i];
	li[++cnt]=li[n];
	//判断新加入线的影响 
	for(i=1;i<=cnt;i++)
	{
		while(r-l>1 && onright(li[i],que[r-1],que[r-2]))
			r--;
		while(r-l>1 && onright(li[i],que[l],que[l+1]))
			l++;
		que[r++]=li[i]; 
	}
	//判断最先和最后加入的直线的影响
	while(r-l>1 && onright(que[l],que[r-1],que[r-2]))
		r--;
	while(r-l>1 && onright(que[r-1],que[l],que[l+1]))
		l++;
	return r-l>=3;
}
double askarea(point d[],int n)
{
	d[n+1]=d[1];
	double area=0;
	for(int i=1;i<=n;i++)
		area+=(d[i]^d[i+1]);
	area/=2;
	return area;
} 
int main()
{
	int t;
	scanf("%d",&t);
	while(t--)
	{
		line l[N];
		int i,len=0,n;
		scanf("%d",&n);
		for(i=1;i<=n;i++)
			p[i].read();
		if(askarea(p,n)>=0)
		{
			for(i=1;i<n;i++)
				l[++len]=line(p[i],p[i+1]);
			l[++len]=line(p[n],p[1]);
		}
		else
		{
			for(i=1;i<=n;i++)
				l[++len]=line(p[i+1],p[i]);
			l[++len]=line(p[1],p[n]);
		}
		cout<<(hpi(l,len)?"YES":"NO")<<endl;	
	} 	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值