最近,就业市场被AI搅得“天翻地覆”,两条新闻引发了大众热议。先是张雪峰回应DeepSeek这类AI模型大热时,表示自己所在的高考志愿填报行业或许会受到冲击,虽说能打破信息差,但也面临着被AI取代的风险,毕竟如今AI获取知识太轻松了,不过他也强调这行还能提供情绪价值。
几乎同一时间,韩束母公司上美股份陷入“AI裁员”风波,网传其创始人要求用AI替代人工,多个部门裁员比例惊人,虽说创始人后续澄清是人员结构优化,整体还会扩招,但这还是让大家对AI时代的就业充满担忧。
其实,早在这些新闻爆出来前,就有研究给部分职场人敲响了警钟。北京大学国家发展研究院张丹丹教授团队研究发现,财务、审计、税务、翻译、银行、销售、软件与互联网开发等行业,是最容易被AI替代的。他们从招聘平台拆解大量岗位任务,让ChatGPT打分评估可替代性,结果显示白领工作首当其冲,蓝领工作目前相对安全。这背后的逻辑不难理解,AI擅长处理数据、信息,像财务报表分析、翻译文稿、代码编写等工作,它都能高效完成,而蓝领的体力活和精细操作,暂时还超出AI的能力范围。
AI替代财务:效率变革下的职场冲击
在传统财务工作模式中,财务人员需花费大量时间处理基础账务工作。朋友娜娜在一家中型企业的财务部门工作,凭借三年经验,她本信心满满地竞争主管职位,却被新来的助理会计“弯道截胡”。这位新同事熟练运用如德勤财务机器人这类AI工具,能在几分钟内完成上百个表格数据的筛选与入账,以往娜娜完成这项工作需要整整两天。而且,新同事借助AI快速搭建销售分析模型,为公司决策提供有力数据支持,入职不到一年就获得提拔,薪资翻倍。如今,越来越多企业的基础财务核算、报表生成等工作,都逐渐被AI替代,促使财务人员向更具战略分析和决策支持的方向转型。
AI替代教师:科技赋能教育的新挑战
2025年8月开始招生的美国亚利桑那州Unbound Academy,是AI深度介入教育的典型案例。该校面向4至8年级学生,学生每天上午2小时的数学、阅读、科学等学科知识学习由AI主导,借助IXL和Khan Academy等教育科技平台,AI能根据每个学生的学习节奏和风格,提供个性化学习路径。在尼日利亚,一所高中大胆尝试用GPT - 4代替人类老师进行课外英语和数学辅导,经过6周的实践,其辅导效果相当于两年的传统学习收益,超过了此前80%的教育措施。这表明,AI在知识传授方面正展现出强大的能力,也让教师职业面临新的挑战,如何发挥情感关怀、价值观引导等不可替代的作用,成为教育从业者思考的关键。
AI替代客服:人机交互的现状与思考
在电商领域,AI客服的应用极为广泛。不少网友都有过与AI客服“斗智斗勇”的经历,询问商品发货时间,AI客服却答非所问;咨询优惠券领取失败原因,得到的回复也是风马牛不相及。甚至有网友吐槽某电商平台用AI客服冒充人工客服,交流体验极差。给苹果客服打电话咨询,也常需先与AI周旋许久才能接通人工。但不可否认,AI客服凭借7×24小时在线、可同时接待大量咨询等优势,承担了大部分简单重复性的客服工作,这使得人工客服岗位数量在许多企业大幅减少,不过也促使客服行业向更注重解决复杂问题、提供优质服务体验的方向发展。
随着机器人和AI技术的发展,就业市场两极化趋势愈发明显。制造业就是典型例子,2015年中国机器人元年之后,大量蓝领工人被替代。虽说目前电子产品组装、打磨边角等工作还需要人工,但工业机器人技术在进步,人型机器人行业在觉醒,未来人工岗位减少恐怕难以避免。与此同时,用工市场对制造业工人的技能要求降低,零工数量增加。而在AI影响下,白领阶层也开始“动荡”,中等技能的脑力劳动者面临“高不成低不就”的困境,逐渐被替代,就业市场需求越来越向高端人才和低技能劳动者两端倾斜。
面对AI的冲击,大家也不用太过悲观。一方面,AI的发展催生了新职业,比如数据标注师,就是在AI发展过程中诞生的。张雪峰所说的情绪价值,也是人类对抗AI的优势之一。像心理咨询、艺术创作、创意营销这类需要情感共鸣、创造力的工作,AI很难替代。另一方面,我们要学会和AI协同工作。就像上美股份即便想借助AI提升效率,但也保留了部分能运用AI的员工。那些重复性、规律性的工作交给AI,人们专注于发挥自身独特价值,就能实现双赢。
在AI浪潮下,就业市场的变革不可避免。无论是即将步入职场的年轻人,还是在职场摸爬滚打多年的“老江湖”,都得重新审视自身技能,主动学习、提升,挖掘不可替代的价值。只有这样,我们才能在这场就业风暴中站稳脚跟,不被时代淘汰。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。